首页> 美国卫生研究院文献>Briefings in Bioinformatics >Pioneering topological methods for network-based drug–target prediction by exploiting a brain-network self-organization theory
【2h】

Pioneering topological methods for network-based drug–target prediction by exploiting a brain-network self-organization theory

机译:利用脑网络自组织理论进行基于网络的药物目标预测的开拓性拓扑方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The bipartite network representation of the drug–target interactions (DTIs) in a biosystem enhances understanding of the drugs’ multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art DTI supervised predictors custom-made in network biology were compared—using standard and innovative validation frameworks—with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks. Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-community-paradigm (LCP) theory—initially detected in brain-network topological self-organization and afterwards generalized to any complex network—is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining methodologies based on diverse principles represents a promising strategy to improve drug–target discovery. To conclude, this study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering.
机译:生物系统中药物-靶标相互作用(DTI)的双向网络表示可增强对药物多方面作用模式的了解,建议对已批准药物进行治疗性转换,并揭示可能的副作用。由于DTI的实验测试既昂贵又费时,因此计算预测器将大有帮助。在这里,首次使用标准和创新的验证框架,将针对网络生物学中定制的最先进DTI监督预测器与设计用于双向网络中通用链路预测的无监督基于纯拓扑的模型进行比较。令人惊讶的是,我们的结果表明,只要通过最近提出的局部社区范式(LCP)理论充分利用了二元拓扑结构,该拓扑结构最初是在脑网络拓扑自组织中检测到的,然后推广到任何复杂的网络中。可以提供高度可靠的预测,并且可以与利用其他DTI知识(例如非拓扑结构,例如生物化学)的最新监督方法相媲美。此外,对新颖预测的详细分析显示,每种方法都将不同的真实交互置于优先地位。因此,将基于多种原理的方法相结合代表了一种改善药物靶点发现的有前途的策略。总而言之,这项研究增强了生物启发式计算的力量,证明了在生命智能系统(例如大脑)学习过程中,受拓扑自组织原理和自适应性启发的简单无监督规则可以有效地等效执行基于高级算法的复杂算法。 ,受监督和基于知识的工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号