首页> 美国卫生研究院文献>Carcinogenesis >Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice
【2h】

Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice

机译:微管动力学和染色体分离失控导致的基因组不稳定性增强:小鼠遗传学研究的一个观点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aneuploidy is defined as numerical abnormalities of chromosomes and is frequently (>90%) present in solid tumors. In general, tumor cells become increasingly aneuploid with tumor progression. It has been proposed that enhanced genomic instability at least contributes significantly to, if not requires, tumor progression. Two major modes for genomic instability are microsatellite instability (MIN) and chromosome instability (CIN). MIN is associated with DNA-level defects (e.g. mismatch repair defects), and CIN is associated with mitotic errors such as chromosome mis-segregation. The mitotic spindle assembly checkpoint (SAC) ensures that cells with defective mitotic spindles or defective interaction between the spindles and kinetochores do not initiate chromosomal segregation during mitosis. Thus, the SAC functions to protect the cell from chromosome mis-segregation and anueploidy during cell division. A loss of the SAC function results in gross aneuploidy, a condition from which cells with an advantage for proliferation will be selected. During the past several years, a flurry of genetic studies in mice and humans strongly support the notion that an impaired SAC causes enhanced genomic instabilities and tumor development. This review article summarizes the roles of key spindle checkpoint proteins {i.e. Mad1/Mad1L1, Mad2/Mad2L1, BubR1/Bub1B, Bub3/Bub3 [conventional protein name (yeast or human)/mouse protein name]} and the modulators (i.e. Chfr/Chfr, Rae1/Rae1, Nup98/Nup98, Cenp-E/CenpE, Apc/Apc) in genomic stability and suppression of tumor development, with a focus on information from genetically engineered mouse model systems. Further elucidation of molecular mechanisms of the SAC signaling has the potential for identifying new targets for rational anticancer drug design.
机译:非整倍性被定义为染色体的数字异常,并经常(> 90%)存在于实体瘤中。通常,肿瘤细胞随着肿瘤进展变得越来越非整倍体。已经提出,增强的基因组不稳定性至少显着地有助于(如果不需要的话)肿瘤的进展。基因组不稳定性的两种主要模式是微卫星不稳定性(MIN)和染色体不稳定性(CIN)。 MIN与DNA水平缺陷(例如错配修复缺陷)有关,而CIN与有丝分裂错误(例如染色体错选)有关。有丝分裂纺锤体装配检查点(SAC)确保有丝分裂纺锤体有缺陷或纺锤体与动植物之间相互作用不良的细胞在有丝分裂过程中不会启动染色体分离。因此,SAC的功能是保护细胞免受细胞分裂过程中染色体的错误分离和非整倍性的影响。 SAC功能的丧失导致总体非整倍性,从中可以选择具有增殖优势的细胞。在过去的几年中,在小鼠和人类中进行的一系列遗传学研究强烈支持这样的观点,即SAC受损会导致基因组不稳定和肿瘤发展加剧。这篇综述文章总结了关键纺锤体检查点蛋白(即Mad1 / Mad1L1,Mad2 / Mad2L1,BubR1 / Bub1B,Bub3 / Bub3 [常规蛋白质名称(酵母或人)/小鼠蛋白质名称]}和调节剂(即Chfr / Chfr,Rae1 / Rae1,Nup98 / Nup98,Cenp-E / CenpE,Apc / Apc)的研究,重点关注基因工程小鼠模型系统的信息。进一步阐明SAC信号传导的分子机制有可能为合理的抗癌药物设计确定新的靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号