首页> 美国卫生研究院文献>American Journal of Physiology - Lung Cellular and Molecular Physiology >Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation
【2h】

Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation

机译:乳酸脱氢酶A在有氧糖酵解中维持肺微血管内皮细胞增殖的关键作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pulmonary microvascular endothelial cells possess both highly proliferative and angiogenic capacities, yet it is unclear how these cells sustain the metabolic requirements essential for such growth. Rapidly proliferating cells rely on aerobic glycolysis to sustain growth, which is characterized by glucose consumption, glucose fermentation to lactate, and lactic acidosis, all in the presence of sufficient oxygen concentrations. Lactate dehydrogenase A converts pyruvate to lactate necessary to sustain rapid flux through glycolysis. We therefore tested the hypothesis that pulmonary microvascular endothelial cells express lactate dehydrogenase A necessary to utilize aerobic glycolysis and support their growth. Pulmonary microvascular endothelial cell (PMVEC) growth curves were conducted over a 7-day period. PMVECs consumed glucose, converted glucose into lactate, and acidified the media. Restricting extracellular glucose abolished the lactic acidosis and reduced PMVEC growth, as did replacing glucose with galactose. In contrast, slow-growing pulmonary artery endothelial cells (PAECs) minimally consumed glucose and did not develop a lactic acidosis throughout the growth curve. Oxygen consumption was twofold higher in PAECs than in PMVECs, yet total cellular ATP concentrations were twofold higher in PMVECs. Glucose transporter 1, hexokinase-2, and lactate dehydrogenase A were all upregulated in PMVECs compared with their macrovascular counterparts. Inhibiting lactate dehydrogenase A activity and expression prevented lactic acidosis and reduced PMVEC growth. Thus PMVECs utilize aerobic glycolysis to sustain their rapid growth rates, which is dependent on lactate dehydrogenase A.
机译:肺微血管内皮细胞具有高度增殖和血管生成的能力,但尚不清楚这些细胞如何维持这种生长所必需的代谢要求。快速增殖的细胞依靠有氧糖酵解来维持生长,其特征是消耗葡萄糖,葡萄糖发酵成乳酸以及乳酸性酸中毒,所有这些都存在足够的氧气浓度。乳酸脱氢酶A将丙酮酸转化为通过糖酵解维持快速通量所必需的乳酸。因此,我们检验了以下假设:肺微血管内皮细胞表达乳酸脱氢酶A,这是利用有氧糖酵解并支持其生长所必需的。在7天的时间内进行了肺微血管内皮细胞(PMVEC)的生长曲线。 PMVEC消耗葡萄糖,将葡萄糖转化为乳酸,并酸化培养基。限制细胞外葡萄糖消除了乳酸性酸中毒并减少了PMVEC的生长,就像用半乳糖替代葡萄糖一样。相反,缓慢生长的肺动脉内皮细胞(PAEC)消耗的葡萄糖最少,并且在整个生长曲线中均未发生乳酸性酸中毒。 PAEC的耗氧量是PMVEC的两倍,而PMVEC的总细胞ATP浓度却高出两倍。与大血管对应物相比,PMVECs中的葡萄糖转运蛋白1,己糖激酶-2和乳酸脱氢酶A均被上调。抑制乳酸脱氢酶A的活性和表达可防止乳酸性酸中毒并减少PMVEC的生长。因此,PMVEC利用有氧糖酵解来维持其快速生长速率,这取决于乳酸脱氢酶A。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号