首页> 美国卫生研究院文献>American Journal of Physiology - Lung Cellular and Molecular Physiology >Soluble guanylate cyclase modulates alveolarization in the newborn lung
【2h】

Soluble guanylate cyclase modulates alveolarization in the newborn lung

机译:可溶性鸟苷酸环化酶调节新生肺中的肺泡形成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nitric oxide (NO) regulates lung development through incompletely understood mechanisms. NO controls pulmonary vascular smooth muscle cell (SMC) differentiation largely through stimulating soluble guanylate cyclase (sGC) to produce cGMP and increase cGMP-mediated signaling. To examine the role of sGC in regulating pulmonary development, we tested whether decreased sGC activity reduces alveolarization in the normal and injured newborn lung. For these studies, mouse pups with gene-targeted sGC-α1 subunit truncation were used because we determined that they have decreased pulmonary sGC enzyme activity. sGC-α1 knockout (KO) mouse pups were observed to have decreased numbers of small airway structures and lung volume compared with wild-type (WT) mice although lung septation and body weights were not different. However, following mild lung injury caused by breathing 70% O2, the sGC-α1 KO mouse pups had pronounced inhibition of alveolarization, as evidenced by an increase in airway mean linear intercept, reduction in terminal airway units, and decrease in lung septation and alveolar openings, as well as reduced somatic growth. Because cGMP regulates SMC phenotype, we also tested whether decreased sGC activity reduces lung myofibroblast differentiation. Cellular markers revealed that vascular SMC differentiation decreased, whereas myofibroblast activation increased in the hyperoxic sGC-α1 KO pup lung. These results indicate that lung development, particularly during hyperoxic injury, is impaired in mouse pups with diminished sGC activity. These studies support the investigation of sGC-targeting agents as therapies directed at improving development in the newborn lung exposed to injury.
机译:一氧化氮(NO)通过不完全了解的机制调节肺部发育。 NO通过刺激可溶性鸟苷酸环化酶(sGC)产生cGMP并增加cGMP介导的信号传导,从而控制肺血管平滑肌细胞(SMC)的分化。为了检查sGC在调节肺发育中的作用,我们测试了sGC活性降低是否能减少正常和受伤的新生肺中的肺泡形成。对于这些研究,使用具有基因靶向的sGC-α1亚基截短的小鼠幼崽,因为我们确定它们具有降低的肺sGC酶活性。观察到与野生型(WT)小鼠相比,sGC-α1基因敲除(KO)小鼠的小气道结构和肺活量减少,尽管肺分隔和体重没有差异。但是,由于呼吸70%的氧气引起的轻度肺损伤后,sGC-α1KO小鼠幼崽明显抑制了肺泡形成,如气道平均线性截距增加,终末气道单位减少以及肺分隔和肺泡减少所证明开口,以及减少体细胞生长。由于cGMP调节SMC表型,我们还测试了sGC活性降低是否会降低肺成纤维细胞分化。细胞标记显示,高氧sGC-α1KO幼仔肺中血管SMC分化减少,而成纤维细胞活化增加。这些结果表明,在幼鼠中,sGC活性降低,特别是在高氧损伤期间,肺发育受到了损害。这些研究支持对sGC靶向剂的研究,该疗法旨在改善暴露于损伤的新生肺的发育。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号