首页> 美国卫生研究院文献>American Journal of Physiology - Cell Physiology >Hugh Davson Distinguished Lectureship of the Cell and Molecular Physiology Section 2016: Caveolins and cavins in the trafficking maturation and degradation of caveolae: implications for cell physiology
【2h】

Hugh Davson Distinguished Lectureship of the Cell and Molecular Physiology Section 2016: Caveolins and cavins in the trafficking maturation and degradation of caveolae: implications for cell physiology

机译:休·达夫森(Hugh Davson)细胞和分子生理学杰出讲座2016年:小窝蛋白的运输成熟和降解中的小窝蛋白和小窝:对细胞生理学的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Caveolins (Cavs) are ~20 kDa scaffolding proteins that assemble as oligomeric complexes in lipid raft domains to form caveolae, flask-shaped plasma membrane (PM) invaginations. Caveolae (“little caves”) require lipid-lipid, protein-lipid, and protein-protein interactions that can modulate the localization, conformational stability, ligand affinity, effector specificity, and other functions of proteins that are partners of Cavs. Cavs are assembled into small oligomers in the endoplasmic reticulum (ER), transported to the Golgi for assembly with cholesterol and other oligomers, and then exported to the PM as an intact coat complex. At the PM, cavins, ~50 kDa adapter proteins, oligomerize into an outer coat complex that remodels the membrane into caveolae. The structure of caveolae protects their contents (i.e., lipids and proteins) from degradation. Cellular changes, including signal transduction effects, can destabilize caveolae and produce cavin dissociation, restructuring of Cav oligomers, ubiquitination, internalization, and degradation. In this review, we provide a perspective of the life cycle (biogenesis, degradation), composition, and physiologic roles of Cavs and caveolae and identify unanswered questions regarding the roles of Cavs and cavins in caveolae and in regulating cell physiology.
机译:Caveolins(Cavs)是约20 kDa的脚手架蛋白,在脂质筏结构域中组装成寡聚复合物,形成小窝,瓶状质膜(PM)内陷。洞室(“小洞”)需要脂质-脂质,蛋白质-脂质和蛋白质-蛋白质相互作用,这些相互作用可以调节蛋白质的定位,构象稳定性,配体亲和力,效应子特异性以及作为Cavs伴侣的蛋白质的其他功能。腔体在内质网(ER)中组装成小的低聚物,运输到高尔基体与胆固醇和其他低聚物组装,然后作为完整的外壳复合物出口到PM。在PM处,约50 kDa衔接蛋白的cavins寡聚为外膜复合物,该复合物将膜重塑为小孔。小窝的结构可保护其内容物(即脂质和蛋白质)免于降解。细胞的变化,包括信号转导作用,可能使小窝不稳定并产生cavin解离,Cav低聚物重组,泛素化,内在化和降解。在这篇综述中,我们提供了Cavs和小窝的生命周期(生物发生,降解),组成和生理作用的观点,并确定了关于Cavs和小窝在小窝和调节细胞生理中的作用的未解决问题。 < / sup>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号