首页> 美国卫生研究院文献>International Journal of Molecular Sciences >Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors
【2h】

Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors

机译:曲霉和有机电子受体的FAD依赖性葡萄糖脱氢酶的双分子速率常数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus. At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k2 values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.
机译:来自曲霉菌种的黄素腺嘌呤二核苷酸依赖性葡萄糖脱氢酶(FAD-GDH)需要合适的氧化还原介体将电子从酶转移到电极表面,以用于生物电设备。尽管已经使用了几种FAD-GDH介体,但从潜力,动力学,可持续性和成本效益方面来看,它们仍远未达到最佳。在这里,我们研究了各种吩噻嗪和醌类化合物在曲霉曲霉FAD-GDH电化学氧化中的效率。在pH 7.0下,双分子氧化速率常数的对数似乎取决于所有测试介体的氧化还原电势。值得注意的是,FAD-GDH的每个分子的速率常数比曲霉属菌种的葡萄糖氧化酶的速率常数高约2.5个数量级。结果表明,电子转移动力学主要取决于介体的形式电势,电子转移的驱动力以及介体的氧化还原活性位与FAD之间的电子转移距离,受空间或化学相互作用的影响。在与FAD-GDH和葡萄糖氧化酶反应中,对苯醌的k2值高于对苯醌,这很可能是由于对苯醌在活性位点的空间位阻较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号