首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing
【2h】

Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing

机译:纳米结构的尖端形状生物传感器:六西格码方法在增强制造中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.
机译:纳米结构的尖端形生物传感器已引起人们对生物分子检测的关注,因为它们有望用于目标分析物的高灵敏度和特异性检测。使用纳米结构的尖端,由于高纵横比结构,提高了识别单个分子的灵敏度。为了提高灵敏度和特异性,已经尝试了各种检测方法,例如电化学,荧光显微镜和拉曼光谱。由于电子的路径受限,使用纳米尖端的电化学测量可以检测单个分子。当电场与毛细作用和流体流动相结合时,目标分子可以有效地集中到纳米尖端表面上进行检测。为了提高浓缩效率,可以使用树状纳米尖端而不是单个尖端来检测目标分析物,例如纳米颗粒,细胞和DNA。然而,由于制造方法的不稳定性,导致形状不一致,与特定检测有关的可重复制造仍然是一个挑战。在本文中,使用树突状纳米尖端对DNA进行序列特异性检测的实验结果对纳米结构生物传感器进行了综述。借助六西格玛方法,树状纳米尖端的制造产率从20.0%提高到86.6%。使用纳米尖端,以特定于序列的方式浓缩和检测DNA,检测限等于1000 CFU / mL。结合未来的前景评估了纳米尖端生物传感器的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号