首页> 美国卫生研究院文献>Materials >Light Management Enhancement for Four-Terminal Perovskite-Silicon Tandem Solar Cells: The Impact of the Optical Properties and Thickness of the Spacer Layer between Sub-Cells
【2h】

Light Management Enhancement for Four-Terminal Perovskite-Silicon Tandem Solar Cells: The Impact of the Optical Properties and Thickness of the Spacer Layer between Sub-Cells

机译:四端子钙钛矿-硅串联太阳能电池的光管理增强:子电池之间的光学特性和间隔层厚度的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanical stacking of a thin film perovskite-based solar cell on top of crystalline Si (cSi) solar cell has recently attracted a lot of attention as it is considered a viable route to overcome the limitations of cSi single junction power conversion efficiency. Effective light management is however crucial to minimize reflection or parasitic absorption losses in either the top cell or in the light in-coupling of the transmitted light to the bottom sub-cell. The study here is focused on calculating an optimum performance of a four-terminal mechanically stacked tandem structure by varying the optical property and thickness of the spacer between top and bottom sub-cells. The impact of the nature of the spacer material, with its refractive index and absorption coefficient, as well as the thickness of that layer is used as variables in the optical simulation. The optical simulation is done by using the transfer matrix-method (TMM) on a stack of a semi-transparent perovskite solar cell (top cell) mounted on top of a cSi interdigitated back contact (IBC) solar cell (bottom cell). Two types of perovskite absorber material are considered, with very similar optical properties. The total internal and external short circuit current (Jsc) losses for the semitransparent perovskite top cell as a function of the different optical spacers (material and thickness) are calculated. While selecting the optical spacer materials, Jsc for both silicon (bottom cell) and perovskite (top cell) were considered with the aim to optimize the stack for maximum overall short circuit current. From these simulations, it was found that this optimum in our four-terminal tandem occurred at a thickness of the optical spacer of 160 nm for a material with refractive index n = 1.25. At this optimum, with a combination of selected semi-transparent perovskite top cell, the simulated maximum overall short circuit current (Jsc-combined, max) equals to 34.31 mA/cm2. As a result, the four-terminal perovskite/cSi multi-junction solar cell exhibits a power conversion efficiency (PCE) of 25.26%, as the sum of the perovskite top cell PCE = 16.50% and the bottom IBC cSi cell PCE = 8.75%. This accounts for an improvement of more than 2% absolute when compared to the stand-alone IBC cSi solar cell with 23.2% efficiency.
机译:在晶体硅(cSi)太阳能电池上机械堆叠钙钛矿基薄膜太阳能电池最近引起了很多关注,因为它被认为是克服cSi单结功率转换效率局限性的可行途径。然而,有效的光管理对于最小化顶部电池或透射光与底部子电池的光耦合中的反射或寄生吸收损失至关重要。这里的研究集中在通过改变顶部和底部子电池之间的间隔物的光学特性和厚度来计算四端子机械堆叠的串联结构的最佳性能。间隔材料的性质及其折射率和吸收系数的影响以及该层的厚度在光学模拟中用作变量。通过在安装在cSi叉指背接触(IBC)太阳能电池(底部电池)顶部的半透明钙钛矿太阳能电池(顶部电池)的堆栈上使用传输矩阵方法(TMM)进行光学模拟。考虑了两种类型的钙钛矿吸收体材料,它们具有非常相似的光学性能。计算了半透明钙钛矿顶部电池的总内部和外部短路电流(Jsc)损耗,该损耗是不同光学垫片(材料和厚度)的函数。在选择光学垫片材料时,考虑了硅(底部电池)和钙钛矿(顶部电池)的Jsc,目的是优化堆叠,以获得最大的整体短路电流。从这些模拟中发现,对于折射率n = 1.25的材料,在我们的四端串联结构中,这种最佳情况发生在光学间隔物的厚度为160 nm的情况下。在此最佳条件下,结合所选的半透明钙钛矿顶部电池,模拟的最大总短路电流(Jsc组合,最大值)等于34.31 mA / cm 2 。结果,钙钛矿顶部电池PCE = 16.50%和底部IBC cSi电池PCE = 8.75%,四端钙钛矿/ cSi多结太阳能电池的功率转换效率(PCE)为25.26%。 。与效率为23.2%的独立IBC cSi太阳能电池相比,绝对值提高了2%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号