首页> 美国卫生研究院文献>Annals of Botany >Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?
【2h】

Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?

机译:在较高的CO2浓度下长期培育幼树是否会影响其对温度的光合响应?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase.>Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques.>Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry.>Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary.
机译:>背景和目的:在大气CO2浓度升高的条件下生长的植物通常气孔导度降低,随后叶片温度升高。因此,本研究检验了以下假设:在长期CO2升高的情况下,光合过程的最佳温度将朝着更高的温度方向移动,并且光合装置的热稳定性将提高。>方法对阔叶树苗进行了检验森林(Fagus sylvatica)和针叶云杉的云杉冷杉在环境(AC; 385 µmol mol -1 )或升高的环境中(EC; 700 µmol mol -1 )暴露4-5年浓度。通过气体交换和叶绿素荧光技术确定了光合作用的温度响应曲线。>主要结果初步确定了EC植物光饱和气孔导度降低和叶片温度升高的假设。温度响应曲线表明,由于EC在较宽的温度范围内,导致光饱和CO2同化率(Amax)受到刺激,光呼吸(RL)下降。但是,在低温和高温下这些影响可以忽略不计或降低。与AC幼树相比,EC幼树的Amax,Rubisco羧化率(VCmax)和RL的最高最佳温度(Topt)。但是,在相同的CO2浓度下测量时,Amax的Topt位移是瞬时的,并且消失了。在升高的CO2浓度下,Topt的较高值尤其归因于光呼吸作用的降低和1,5-双磷酸核糖(RuBP)再生对光合作用的普遍限制。荧光参数的温度响应曲线表明EC对提高光系统II光化学热稳定性的影响可忽略不计。>结论 CO 2的升高由于光呼吸和温度的降低而瞬间增加了A max 的最佳温度。 RuBP再生对光合作用的限制。但是,当植物暴露于相同的CO 2 浓度时,这种增加消失了。此外,在CO 2 升高的条件下生长的植物中初级光化学的耐热胁迫耐受性不可能提高。因此,关于在CO 2 升高的条件下进行长期栽培会导致光合作用适应更高温度的假说被拒绝了。然而,必须将适应机制纳入模拟大气和植被之间的碳通量的模型中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号