首页> 美国卫生研究院文献>Annals of Botany >Time‐course of Tomato Whole‐plant Respiration and Fruit and Stem Growth During Prolonged Darkness in Relation to Carbohydrate Reserves
【2h】

Time‐course of Tomato Whole‐plant Respiration and Fruit and Stem Growth During Prolonged Darkness in Relation to Carbohydrate Reserves

机译:长期黑暗状态下番茄全植物呼吸和果实和茎秆生长的时程与碳水化合物储量的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To evaluate the relevance of a simple carbon balance model (Seginer et al., 1994, Scientia Horticulturae >60: 55–80) in source‐limiting conditions, the dynamics of growth, respiration and carbohydrate reserves of tomato plants were observed in prolonged darkness. Four days prior to the experiments, plants were exposed to high or low light levels and CO2 concentrations. The concentration of carbohydrates in vegetative organs was 30–50 % lower in plants that were exposed to low carbon assimilation conditions compared with those exposed to high carbon assimilation conditions. During prolonged darkness, plants with low carbohydrate reserves exhibited a lower whole‐plant respiration rate, which decreased rapidly to almost zero after 24 h, and carbohydrate pools were almost exhausted in leaves, roots and flowers. In plants with high carbohydrate reserves, the whole‐plant respiration rate was maintained for a longer period and carbohydrates remained available for at least 48 h in leaves and flowers. In contrast, fruits maintained fairly stable and identical concentrations of carbohydrates and the reduction in their rate of expansion was moderate irrespective of the pre‐treatment carbon assimilation conditions. The time‐course of asparagine and glutamine concentrations showed the occurrence of carbon stress in leaves and flowers. Estimation of source and sink activities indicated that even after low carbon assimilation, vegetative organs contained enough carbohydrates to support fruit growth provided their own growth stopped. The time of exhaustion of these carbohydrates corresponded grossly to the maintenance stage simulated by the model proposed by Seginer et al. (1994), thus validating the use of such a model for optimizing plant growth.
机译:为了评估简单的碳平衡模型(Seginer等人,1994,Scientia Horticulturae > 60 :55-80)在源限制条件下,番茄的生长,呼吸和碳水化合物储藏动态方面的相关性在长时间黑暗中观察到植物。实验前四天,将植物暴露于高或低光照水平和CO2浓度下。与暴露于高碳同化条件的植物相比,暴露于低碳同化条件的植物中营养器官中碳水化合物的浓度低30–50%。在长时间的黑暗中,碳水化合物含量低的植物表现出较低的整株呼吸速率,在24小时后迅速下降至几乎为零,叶子,根和花中的碳水化合物池几乎耗尽。在具有高碳水化合物储备的植物中,整个植物的呼吸速率保持更长的时间,并且叶片和花朵中的碳水化合物至少保持48小时可用。相比之下,无论预处理碳同化条件如何,水果都可以保持相当稳定且碳水化合物的浓度相同,并且其膨胀率的降低是中等的。天冬酰胺和谷氨酰胺浓度随时间的变化表明叶片和花朵中存在碳胁迫。对源和汇活动的估计表明,即使在低碳同化后,只要其自身的生长停止,营养器官也含有足够的碳水化合物来支持果实生长。这些碳水化合物的消耗时间大致相当于由Seginer等人提出的模型模拟的维持阶段。 (1994),因此验证了使用这种模型优化植物生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号