首页> 美国卫生研究院文献>Annals of Botany >Refilling of a Hydraulically Isolated Embolized Xylem Vessel: Model Calculations
【2h】

Refilling of a Hydraulically Isolated Embolized Xylem Vessel: Model Calculations

机译:液压隔离栓塞木质部容器的加气:模型计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When they are hydraulically isolated, embolized xylem vessels can be refilled, while adjacent vessels remain under tension. This implies that the pressure of water in the refilling vessel must be equal to the bubble gas pressure, which sets physical constraints for recovery. A model of water exudation into the cylindrical vessel and of bubble dissolution based on the assumption of hydraulic isolation is developed. Refilling is made possible by the turgor of the living cells adjacent to the refilling vessel, and by a reflection coefficient below 1 for the exchange of solutes across the interface between the vessel and the adjacent cells. No active transport of solutes is assumed. Living cells are also capable of importing water from the water‐conducting vessels. The most limiting factors were found to be the osmotic potential of living cells and the ratio of the volume of the adjacent living cells to that of the embolized vessel. With values for these of 1·5 MPa and 1, respectively, refilling times were in the order of hours for a broad range of possible values of water conductivity coefficients and effective diffusion distances for dissolved air, when the xylem water tension was below 0·6 MPa and constant. Inclusion of the daily pattern for xylem tension improved the simulations. The simulated gas pressure within the refilling vessel was in accordance with recent experimental results. The study shows that the refilling process is physically possible under hydraulic isolation, while water in surrounding vessels is under negative pressure. However, the osmotic potentials in the refilling vessel tend to be large (in the order of 1 MPa). Only if the xylem water tension is, at most, twice atmospheric pressure, the reflection coefficient remains close to 1 (0·95) and the ratio of the volume of the adjacent living cells to that of the embolized vessel is about 2, does the osmotic potential stay below 0·4 MPa.
机译:当液压隔离时,可以重新填充栓塞的木质部容器,而相邻的容器仍处于拉伸状态。这意味着加注容器中的水压必须等于气泡气体压力,这为回收设置了物理限制。基于水力隔离的假设,建立了渗入圆柱容器的水和气泡溶解的模型。通过与再填充容器相邻的活细胞的膨润度和小于1的反射系数,使溶质在容器和相邻细胞之间的界面上交换,可以实现重新填充。假定不主动输送溶质。活细胞还能够从导水容器中导入水。发现最大的限制因素是活细胞的渗透势以及相邻活细胞的体积与栓塞血管的体积之比。当木质部水张力低于0·时,对于水的电导率系数和溶解空气的有效扩散距离的可能值的较宽范围,分别使用1·5 MPa和1的值,重新装填时间约为数小时。 6 MPa,恒定。包括每日的木质部张力模式改善了模拟。加注容器内的模拟气压与最近的实验结果一致。研究表明,在水力隔离下,加注过程在物理上是可能的,而周围容器中的水处于负压状态。然而,在再填充容器中的渗透势趋于大(大约1MPa)。只有木质部的水张力最多为大气压的两倍,反射系数保持接近1(0·95),并且相邻活细胞与栓塞血管的体积之比约为2,渗透势保持在0·4 MPa以下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号