首页> 美国卫生研究院文献>Annals of Botany >Photosynthetic Carbon Reduction and Carbon Oxidation Cycles are the Main Electron Sinks for Photosystem II Activity During a Mild Drought
【2h】

Photosynthetic Carbon Reduction and Carbon Oxidation Cycles are the Main Electron Sinks for Photosystem II Activity During a Mild Drought

机译:光合碳还原和碳氧化循环是轻度干旱期间光系统II活性的主要电子吸收器。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stomatal closure can explain the inhibition of net CO2 uptake by a leaf subjected to a mild drought: the photosynthetic apparatus appears resistant to lack of water. Changes in both the water content of leaves maintained in a constant environment and the ambient CO2 molar fraction during measurements on well‐hydrated leaves lead to similar effects on net CO2 uptake and whole chain electron transport as estimated by leaf chlorophyll fluorescence measurements. In particular, it is shown that photosystem II (PSII) functioning and its regulation are not qualitatively changed during desiccation and that the variations in PSII photochemistry can simply be understood by changes in substrate availability in this condition. Moreover, an analysis of the literature shows that when inhibition of net CO2 uptake by C3 leaves under drought (Phaseolus vulgaris L., Helianthus annus L. and Solanum tuberosum L.) was lower than 80 %, elevated CO2 completely restored the photosynthetic capacity. The CO2 molar fraction in the chloroplasts declines as stomata close in drying leaves. As a consequence, in C3 plants, ribulose‐1,5‐bisphosphate oxygenation increases and becomes the main sink for photosynthetic electrons. Depending on the prevailing photon flux density, the O2 uptake through photorespiratory activity can entirely replace carbon dioxide as an electron acceptor, or not. The rate of the Mehler reaction remains low and unchanged during desiccation. However, drought could also involve CO2‐sensitive modification of the photosynthetic metabolism depending on plant growth conditions and possibly also on plant species.
机译:气孔关闭可以解释受到轻度干旱的叶片对净CO2吸收的抑制作用:光合作用装置似乎对缺水具有抵抗力。在水合良好的叶片上进行测量的过程中,保持恒定环境的叶片中水分含量和周围CO2摩尔分数的变化,都会对叶片的净CO2吸收和全链电子传递产生相似的影响,如叶绿素荧光测量所估计的。特别地,表明在干燥过程中光系统II(PSII)的功能及其调节没有质的变化,并且在该条件下,可以通过基板可用性的变化简单地理解PSII光化学的变化。此外,文献分析表明,当干旱(菜豆,向日葵和马铃薯)的C3叶片对净CO2吸收的抑制作用低于80%时,升高的CO2完全恢复了光合能力。叶绿体中的二氧化碳摩尔分数随着干燥叶片中气孔的关闭而下降。结果,在C3植物中,核糖-1,5-二磷酸的氧合增加,并成为光合电子的主要吸收者。根据当前的光子通量密度,是否可以通过光呼吸活动吸收氧气来完全替代二氧化碳作为电子受体。干燥期间,梅勒反应速率保持较低且不变。但是,干旱还可能取决于植物的生长条件,也可能取决于植物种类,对光合作用的CO2敏感修饰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号