首页> 美国卫生研究院文献>Applied and Environmental Microbiology >In Silico Rational Design and Systems Engineering of Disulfide Bridges in the Catalytic Domain of an Alkaline α-Amylase from Alkalimonas amylolytica To Improve Thermostability
【2h】

In Silico Rational Design and Systems Engineering of Disulfide Bridges in the Catalytic Domain of an Alkaline α-Amylase from Alkalimonas amylolytica To Improve Thermostability

机译:在计算机中合理设计和分解系统工程中的二硫键以改善解淀粉酶的碱性该酶来自碱性解淀粉的碱性α-淀粉酶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High thermostability is required for alkaline α-amylases to maintain high catalytic activity under the harsh conditions used in textile production. In this study, we attempted to improve the thermostability of an alkaline α-amylase from Alkalimonas amylolytica through in silico rational design and systems engineering of disulfide bridges in the catalytic domain. Specifically, 7 residue pairs (P35-G426, Q107-G167, G116-Q120, A147-W160, G233-V265, A332-G370, and R436-M480) were chosen as engineering targets for disulfide bridge formation, and the respective residues were replaced with cysteines. Three single disulfide bridge mutants—P35C-G426C, G116C-Q120C, and R436C-M480C—of the 7 showed significantly enhanced thermostability. Combinational mutations were subsequently assessed, and the triple mutant P35C-G426C/G116C-Q120C/R436C-M480C showed a 6-fold increase in half-life at 60°C and a 5.2°C increase in melting temperature compared with the wild-type enzyme. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50°C to 55°C, the optimum pH shifted from 9.5 to 10.0, the stable pH range extended from 7.0 to 11.0 to 6.0 to 12.0, and the catalytic efficiency (kcat/Km) increased from 1.8 × 104 to 2.4 × 104 liters/g · min. The possible mechanism responsible for these improvements was explored through comparative analysis of the model structures of wild-type and mutant enzymes. The disulfide bridge engineering strategy used in this work may be applied to improve the thermostability of other industrial enzymes.
机译:碱性α-淀粉酶需要很高的热稳定性,才能在纺织品生产中使用的苛刻条件下保持高催化活性。在这项研究中,我们尝试通过计算机合理设计和催化域中二硫键的系统工程,来提高解淀粉碱性碱金属淀粉酶的碱性α-淀粉酶的热稳定性。具体而言,选择7个残基对(P35-G426,Q107-G167,G116-Q120,A147-W160,G233-V265,A332-G370和R436-M480)作为形成二硫键的工程靶标,各自的残基为改为半胱氨酸。 7个中的三个单二硫键桥突变体-P35C-G426C,G116C-Q120C和R436C-M480C显示出显着增强的热稳定性。随后评估了组合突变,与野生型相比,三联突变体P35C-G426C / G116C-Q120C / R436C-M480C在60°C时的半衰期增加了6倍,熔解温度提高了5.2°C酶。有趣的是,该突变体的其他生化特性也得到了改善:最适温度从50°C升高至55°C,最适pH从9.5升高至10.0,稳定pH范围从7.0扩展至11.0到6.0至12.0,并且具有催化作用。效率(kcat / Km)从1.8×10 4 增加到2.4×10 4 升/克·分钟。通过对野生型和突变型酶的模型结构进行比较分析,探索了可能导致这些改善的机制。在这项工作中使用的二硫键工程策略可以应用于提高其他工业酶的热稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号