首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Exploring the Mechanism of Biocatalyst Inhibition in Microbial Desulfurization
【2h】

Exploring the Mechanism of Biocatalyst Inhibition in Microbial Desulfurization

机译:探索微生物脱硫中生物催化剂的抑制机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbial desulfurization, or biodesulfurization (BDS), of fuels is a promising technology because it can desulfurize compounds that are recalcitrant to the current standard technology in the oil industry. One of the obstacles to the commercialization of BDS is the reduction in biocatalyst activity concomitant with the accumulation of the end product, 2-hydroxybiphenyl (HBP), during the process. BDS experiments were performed by incubating Rhodococcus erythropolis IGTS8 resting-cell suspensions with hexadecane at 0.50 (vol/vol) containing 10 mM dibenzothiophene. The resin Dowex Optipore SD-2 was added to the BDS experiments at resin concentrations of 0, 10, or 50 g resin/liter total volume. The HBP concentration within the cytoplasm was estimated to decrease from 1,100 to 260 μM with increasing resin concentration. Despite this finding, productivity did not increase with the resin concentration. This led us to focus on the susceptibility of the desulfurization enzymes toward HBP. Dose-response experiments were performed to identify major inhibitory interactions in the most common BDS pathway, the 4S pathway. HBP was responsible for three of the four major inhibitory interactions identified. The concentrations of HBP that led to a 50% reduction in the enzymes' activities (IC50s) for DszA, DszB, and DszC were measured to be 60 ± 5 μM, 110 ± 10 μM, and 50 ± 5 μM, respectively. The fact that the IC50s for HBP are all significantly lower than the cytoplasmic HBP concentration suggests that the inhibition of the desulfurization enzymes by HBP is responsible for the observed reduction in biocatalyst activity concomitant with HBP generation.
机译:燃料的微生物脱硫或生物脱硫(BDS)是一项很有前途的技术,因为它可以脱除对石油行业当前标准技术有害的化合物。 BDS商业化的障碍之一是在此过程中生物催化剂活性的降低以及最终产物2-羟基联苯(HBP)的积累。 BDS实验是通过将红球红球菌IGTS8静息细胞悬浮液与含有10 mM二苯并噻吩的十六烷在0.50(体积/体积)下孵育来进行的。将树脂Dowex Optipore SD-2以0、10或50 g树脂/升总体积的树脂浓度添加到BDS实验中。随着树脂浓度的增加,估计细胞质中的HBP浓度将从1100μM降低至260μM。尽管有这个发现,生产率并没有随着树脂浓度的增加而增加。这导致我们集中精力研究脱硫酶对HBP的敏感性。进行了剂量反应实验,以确定最常见的BDS途径4S途径中的主要抑制性相互作用。 HBP负责确定的四个主要抑制性相互作用中的三个。导致DszA,DszB和DszC的酶活性(IC50s)降低50%的HBP浓度分别为60±5μM,110±10μM和50±5μM。 HBP的IC50均显着低于细胞质HBP浓度的事实表明,HBP对脱硫酶的抑制作用是观察到的伴随HBP产生的生物催化剂活性下降的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号