首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Increased Malonyl Coenzyme A Biosynthesis by Tuning the Escherichia coli Metabolic Network and Its Application to Flavanone Production
【2h】

Increased Malonyl Coenzyme A Biosynthesis by Tuning the Escherichia coli Metabolic Network and Its Application to Flavanone Production

机译:通过调节大肠杆菌的代谢网络提高丙二酸辅酶A的生物合成及其在黄酮的生产中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Identification of genetic targets able to bring about changes to the metabolite profiles of microorganisms continues to be a challenging task. We have independently developed a cipher of evolutionary design (CiED) to identify genetic perturbations, such as gene deletions and other network modifications, that result in optimal phenotypes for the production of end products, such as recombinant natural products. Coupled to an evolutionary search, our method demonstrates the utility of a purely stoichiometric network to predict improved Escherichia coli genotypes that more effectively channel carbon flux toward malonyl coenzyme A (CoA) and other cofactors in an effort to generate recombinant strains with enhanced flavonoid production capacity. The engineered E. coli strains were constructed first by the targeted deletion of native genes predicted by CiED and then second by incorporating selected overexpressions, including those of genes required for the coexpression of the plant-derived flavanones, acetate assimilation, acetyl-CoA carboxylase, and the biosynthesis of coenzyme A. As a result, the specific flavanone production from our optimally engineered strains was increased by over 660% for naringenin (15 to 100 mg/liter/optical density unit [OD]) and by over 420% for eriodictyol (13 to 55 mg/liter/OD).
机译:鉴定能够引起微生物代谢产物变化的遗传靶标仍然是一项艰巨的任务。我们独立开发了一种进化设计(CiED)密码,以识别遗传干扰,例如基因缺失和其他网络修饰,从而为生产最终产品(例如重组天然产品)产生最佳表型。结合进化研究,我们的方法证明了纯化学计量网络的实用性,可以预测改进的大肠杆菌基因型,从而更有效地引导碳通量流向丙二酰辅酶A(CoA)和其他辅因子,从而努力产生具有增强类黄酮生产能力的重组菌株。首先通过靶向缺失CiED预测的天然基因来构建工程改造的大肠杆菌菌株,然后通过整合选定的过表达来构建该菌株,这些过表达包括共表达植物来源的黄烷酮,乙酸同化,乙酰辅酶A羧化酶,结果,我们优化设计菌株的黄烷酮比值从柚皮素(15至100 mg / L /光密度单位[OD])增加了660%以上,而雌黄醇增加了420%以上(13至55毫克/升/ OD)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号