首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Malic Acid Production by Saccharomyces cerevisiae: Engineering of Pyruvate Carboxylation Oxaloacetate Reduction and Malate Export
【2h】

Malic Acid Production by Saccharomyces cerevisiae: Engineering of Pyruvate Carboxylation Oxaloacetate Reduction and Malate Export

机译:酿酒酵母生产苹果酸:丙酮酸羧化草酰乙酸还原和苹果酸出口的工程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Malic acid is a potential biomass-derivable “building block” for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO2-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)−1. A previously engineered glucose-tolerant, C2-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter−1 at a malate yield of 0.42 mol (mol glucose)−1. Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on 13C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved.
机译:苹果酸是化学合成中潜在的生物质衍生“基石”。由于野生型酿酒酵母菌株仅产生低水平的苹果酸,因此需要代谢工程以利用该酵母实现有效的苹果酸生产。由葡萄糖产生苹果酸的有希望的途径是通过丙酮酸的羧化,然后是草酰乙酸还原为苹果酸而进行的。该氧化还原和ATP中性的CO2固定途径理论上最大产量为2 mol苹果酸(mol葡萄糖) -1 。以前设计的葡萄糖耐量,不依赖C2的丙酮酸脱羧酶阴性啤酒酵母菌株用作评估单个和联合引入三种遗传修饰的影响的平台:(i)过表达由PYC2编码的天然丙酮酸羧化酶, (ii)MDH3基因的等位基因的高水平表达,其中编码的苹果酸脱氢酶通过缺失C端过氧化物酶体靶向序列而重新定向到细胞质,和(iii)粟酒裂殖酵母苹果酸转运蛋白基因的功能性表达SpMAE1。虽然单或双修饰提高了苹果酸的产量,但同时引入所有三种修饰可获得最高的苹果酸产量和效价。在葡萄糖生长的分批培养物中,所得的工程菌株以最高59 g升 -1 的滴度生产苹果酸,苹果酸产量为0.42 mol(摩尔葡萄糖) -1 。代谢通量分析表明,在 13 C标记的葡萄糖上培养的培养物的核磁共振分析观察到的代谢物标记模式与设想的苹果酸生产的非氧化发酵路径一致。工程菌株仍产生大量丙酮酸,表明途径效率可以进一步提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号