首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Improvement of Xylose Uptake and Ethanol Production in Recombinant Saccharomyces cerevisiae through an Inverse Metabolic Engineering Approach
【2h】

Improvement of Xylose Uptake and Ethanol Production in Recombinant Saccharomyces cerevisiae through an Inverse Metabolic Engineering Approach

机译:通过逆代谢工程方法改善重组酿酒酵母中木糖的摄取和乙醇的生产

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We used an inverse metabolic engineering approach to identify gene targets for improved xylose assimilation in recombinant Saccharomyces cerevisiae. Specifically, we created a genomic fragment library from Pichia stipitis and introduced it into recombinant S. cerevisiae expressing XYL1 and XYL2. Through serial subculturing enrichment of the transformant library, 16 transformants were identified and confirmed to have a higher growth rate on xylose. Sequencing of the 16 plasmids isolated from these transformants revealed that the majority of the inserts (10 of 16) contained the XYL3 gene, thus confirming the previous finding that XYL3 is the consensus target for increasing xylose assimilation. Following a sequential search for gene targets, we repeated the complementation enrichment process in a XYL1 XYL2 XYL3 background and identified 15 fast-growing transformants, all of which harbored the same plasmid. This plasmid contained an open reading frame (ORF) designated PsTAL1 based on a high level of homology with S. cerevisiae TAL1. To further investigate whether the newly identified PsTAL1 ORF is responsible for the enhanced-growth phenotype, we constructed an expression cassette containing the PsTAL1 ORF under the control of a constitutive promoter and transformed it into an S. cerevisiae recombinant expressing XYL1, XYL2, and XYL3. The resulting recombinant strain exhibited a 100% increase in the growth rate and a 70% increase in ethanol production (0.033 versus 0.019 g ethanol/g cells · h) on xylose compared to the parental strain. Interestingly, overexpression of PsTAL1 did not cause growth inhibition when cells were grown on glucose, unlike overexpression of the ScTAL1 gene. These results suggest that PsTAL1 is a better gene target for engineering of the pentose phosphate pathway in recombinant S. cerevisiae.
机译:我们使用了逆代谢工程方法来鉴定重组酿酒酵母中改善木糖同化的基因靶标。具体来说,我们从树干毕赤酵母中创建了一个基因组片段文库,并将其引入表达XYL1和XYL2的重组酿酒酵母中。通过转化子库的连续亚培养富集,鉴定并确认了16个转化子在木糖上具有较高的生长速率。从这些转化子分离的16个质粒的测序表明,大多数插入片段(16个中的10个)包含XYL3基因,因此证实了先前的发现XYL3是增加木糖同化作用的共有靶标。在顺序搜索基因靶标后,我们在XYL1 XYL2 XYL3背景中重复了互补富集过程,并鉴定了15个快速生长的转化子,所有这些都带有相同的质粒。基于与酿酒酵母TAL1的高度同源性,此质粒包含一个开放阅读框(ORF),称为PsTAL1。为了进一步研究新鉴定的PsTAL1 ORF是否对增长表型负责,我们构建了一个在组成型启动子控制下包含PsTAL1 ORF的表达盒,并将其转化为表达XYL1,XYL2和XYL3的酿酒酵母重组体。 。与亲本菌株相比,所得的重组菌株在木糖上的生长速率提高了100%,乙醇产量提高了70%(0.033对0.019 g乙醇/ g细胞·h)。有趣的是,当细胞在葡萄糖上生长时, PsTAL1 的过表达不会引起生长抑制,这与 ScTAL1 基因的过表达不同。这些结果表明, PsTAL1 是重组 S中戊糖磷酸途径工程的更好基因靶标。啤酒酵母

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号