首页> 美国卫生研究院文献>Stem Cell Reports >TRIM28-Regulated Transposon Repression Is Required for Human Germline Competency and Not Primed or Naive Human Pluripotency
【2h】

TRIM28-Regulated Transposon Repression Is Required for Human Germline Competency and Not Primed or Naive Human Pluripotency

机译:人类生殖细胞能力需要TRIM28调控的转座子抑制而人类多能性不是初免的或天真的

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMost studies on the mechanisms that regulate human pluripotency have focused on protein-coding genes, which constitute less than 5% of the human genome. In contrast, TEs, which account for nearly half the human genome, have received significantly less attention. Recent reports have shown that TEs are dynamically expressed in human germline cells, the naive and primed states of human pluripotency, human pre-implantation embryos, and human germ cell tumors (, , , , , ). Yet the mechanisms that regulate the dynamic expression of TEs in human pluripotency and human germline development are not well understood.One of the most dynamically expressed families of TEs in human pre-implantation embryos are long terminal repeat (LTR) retrotransposons, which constitute about 8% of the human genome (). Notably, full-length human-specific LTR5 (LTR5_HS) human endogenous retroviral K (HERVK) TEs are expressed exclusively in 8-cell, morula, and pre-implantation human epiblast cells as well as in germ cell tumors (, ). In contrast, the primate-specific LTR7-HERVHs are expressed throughout human pre-implantation embryo development as well as in primed human embryonic stem cells (hESCs), but are repressed when primed hESCs are converted to the naive state (). LTR5_HS TEs regulate viral infection in human pluripotent stem cells, whereas LTR7-HERVHs regulate primed pluripotent stem cell self-renewal (, , , ).Dynamic TE expression is not restricted to human embryos. In the mouse embryo, murine endogenous retrovirus L (MuERV-L) is expressed at the 2-cell and 8-cell stage of mouse embryo development, whereas intracisternal A particles (IAPs) are expressed in mouse oocytes, cleavage embryos, and blastocysts (). Long interspersed nuclear element 1 (LINE1), a non-LTR TE, is expressed during mouse zygotic genome activation where it functions to enable chromatin accessibility (href="#bib7" rid="bib7" class=" bibr popnode">Fadloun et al., 2013, href="#bib13" rid="bib13" class=" bibr popnode">Jachowicz et al., 2017, href="#bib23" rid="bib23" class=" bibr popnode">Rowe et al., 2010). Therefore TE expression in germline competent pluripotent cells in both mouse and human is a fundamental requirement for pluripotent cell biology.Although regulation of TE expression in human embryos and pluripotent stem cells is not well known, one of the major mechanisms responsible for regulating TE expression in mouse embryos is Trim28 (also named Kap1 and Tif1b) (href="#bib26" rid="bib26" class=" bibr popnode">Schultz et al., 2001, href="#bib27" rid="bib27" class=" bibr popnode">Schultz et al., 2002, href="#bib35" rid="bib35" class=" bibr popnode">Wolf and Goff, 2007, href="#bib37" rid="bib37" class=" bibr popnode">Zuo et al., 2012). In mouse, a zygotic knockout of Trim28 causes embryonic lethality shortly after implantation (href="#bib2" rid="bib2" class=" bibr popnode">Cammas et al., 2000), whereas a maternal mouse knockout causes variable epigenetic instability at imprinting control regions (ICRs), and no live births (href="#bib18" rid="bib18" class=" bibr popnode">Messerschmidt et al., 2012). In naive mouse ESCs, Trim28 is essential for repression of IAPs, as well as mouse ESC self-renewal and survival (href="#bib23" rid="bib23" class=" bibr popnode">Rowe et al., 2010), whereas in primed hESCs, a short-term knockdown of TRIM28 leads to HERV derepression (href="#bib32" rid="bib32" class=" bibr popnode">Turelli et al., 2014); however, the role of TRIM28 in the basic properties of human primed or naive pluripotency is not known.In the current study we report the generation of TRIM28 null mutations in primed and naive hESCs using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein nuclease (Cas9) technology (href="#bib3" rid="bib3" class=" bibr popnode">Cong et al., 2013). We show that a null mutation in TRIM28 is compatible with both primed and naive human self-renewal, despite massive derepression of TEs. We demonstrate that a null mutation in TRIM28 leads to loss of human germline competency from primed hESCs, indicating that it is the ability to differentiate into the germline, not pluripotent self-renewal per se, that is particularly sensitive to loss of TRIM28 in humans.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介关于调节人多能性的大多数研究都集中在蛋白质编码基因上,构成不到人类基因组的5%。相反,占人类基因组近一半的TE受到的关注明显减少。最近的报道表明,TEs在人种系细胞,人多能性的天真和准备状态,人植入前的胚胎和人生殖细胞肿瘤中动态表达(“,”,“,”)。然而,尚不清楚调节人类多能性和人类种系发育中TEs动态表达的机制。人类植入前胚胎中TEs最动态表达的家族之一是长末端重复(LTR)逆转座子,约占8个人类基因组的百分比()。值得注意的是,全长人类特异性LTR5(LTR5_HS)人类内源性逆转录病毒K(HERVK)TE仅在8细胞,桑ula和植入前人类上皮细胞以及生殖细胞肿瘤中表达(,)。相比之下,灵长类特异性LTR7-HERVHs在整个人类植入前的胚胎发育中以及在引发的人类胚胎干细胞(hESCs)中均表达,但在引发的hESCs转化为幼稚状态时受到抑制。 LTR5_HS TEs调节人多能干细胞中的病毒感染,而LTR7-HERVHs调节引发的多能干细胞的自我更新(,,,)。动态TE表达不仅限于人类胚胎。在小鼠胚胎中,小鼠内源性逆转录病毒L(MuERV-L)在小鼠胚胎发育的2细胞和8细胞阶段表达,而脑池内A颗粒(IAP)在小鼠卵母细胞,卵裂胚胎和胚泡中表达( )。在小鼠合子基因组激活期间表达长散在的核元件1(LINE1),这是非LTR TE,其功能是使染色质可及性(href="#bib7" rid="bib7" class=" bibr popnode"> Fadloun等人,2013 ,href="#bib13" rid="bib13" class=" bibr popnode"> Jachowicz等人,2017 ,href =“#bib23” rid =“ bib23” class =“ bibr popnode”> Rowe等人,2010 )。因此,在小鼠和人的生殖系多能干细胞中表达TE是多能细胞生物学的基本要求。尽管对人类胚胎和多能干细胞中TE表达的调节尚不清楚,这是调节TE在小鼠中表达的主要机制之一。小鼠胚胎是Trim28(也称为Kap1和Tif1b)(href="#bib26" rid="bib26" class=" bibr popnode">舒尔茨等,2001 ,href =“#bib27 “ rid =” bib27“ class =” bibr popnode“>舒尔茨等人,2002 ,href="#bib35" rid="bib35" class=" bibr popnode"> Wolf and Goff,2007年< / a>,href="#bib37" rid="bib37" class=" bibr popnode"> Zuo等人,2012 )。在小鼠中,Trim28的合子敲除会在植入后不久引起胚胎致死性(href="#bib2" rid="bib2" class=" bibr popnode"> Cammas et al。,2000 ),而母体是敲除小鼠会在印迹控制区(ICR)引起可变的表观遗传不稳定,并且没有活产(href="#bib18" rid="bib18" class=" bibr popnode"> Messerschmidt et al。,2012 ) 。在幼稚的小鼠ESC中,Trim28对于抑制IAP以及小鼠ESC的自我更新和生存至关重要(href="#bib23" rid="bib23" class=" bibr popnode"> Rowe et al。,2010 ),而在启动的hESC中,TRIM28的短期敲低会导致HERV抑制(href="#bib32" rid="bib32" class=" bibr popnode"> Turelli等,2014 < / a>);然而,TRIM28在人类初免或天真多能性的基本特性中的作用尚不清楚。在当前研究中,我们报道了使用簇状规则间隔的短回文重复序列(CRISPR)/ CRISPR-在初免和天真hESC中产生TRIM28空突变。相关蛋白核酸酶(Cas9)技术(href="#bib3" rid="bib3" class=" bibr popnode"> Cong等人,2013 )。我们显示,尽管TEs大量抑制,TRIM28中的无效突变与引发的和天真的人类自我更新都兼容。我们证明了TRIM28中的无效突变会导致致敏的hESCs丧失人类种系能力,这表明对TRIM28的丧失特别敏感的是分化为种系的能力,而不是本身的多能自我更新。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号