class='head no_bottom_margin' id='sec1title'>Int'/> Real-Time Monitoring of Glutathione in Living Cells Reveals that High Glutathione Levels Are Required to Maintain Stem Cell Function
首页> 美国卫生研究院文献>Stem Cell Reports >Real-Time Monitoring of Glutathione in Living Cells Reveals that High Glutathione Levels Are Required to Maintain Stem Cell Function
【2h】

Real-Time Monitoring of Glutathione in Living Cells Reveals that High Glutathione Levels Are Required to Maintain Stem Cell Function

机译:实时监测活细胞中的谷胱甘肽显示需要维持较高的谷胱甘肽水平才能维持干细胞功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionReactive oxygen species (ROS) are important signaling molecules that regulate cellular metabolism, proliferation, and survival (). An increase of ROS induces the thiol oxidation of cysteine residues on signaling proteins, resulting in alterations of protein activities to regulate cellular functions. In particular, ROS-mediated oxidation plays an important role in regulating a variety of signaling proteins in stem cells (SCs) that influence self-renewal capacity, pluripotency, viability, and genomic stability, including OCT4, NRF2, FoxOs, APE1/Ref-1, ATM, HIF-1, p38, and p53 (). For example, OCT4, a pluripotency-related transcription factor, is inactivated via cysteine oxidation under glutamine-depleted conditions, favoring the differentiation and functional maturation of embryonic SCs (ESCs) (). Disruption of Nrf2, a master regulator of redox homeostasis, impinges upon the functions of embryonic and adult SCs such as the self-renewal and pluripotency in ESCs (), the migration and retention of hematopoietic SCs in the bone marrow niche (), and the proliferation and homeostasis in intestinal () and airway basal SCs (). Thus, the cellular redox regulation is critical for maintaining stemness and functional potency of ESCs and adult SCs.Cellular redox homeostasis depends on the balance between ROS production and their elimination via enzymes and antioxidant molecules such as glutathione (GSH), a thiol-containing tripeptide that plays a major role in maintaining redox homeostasis owing to its high concentration (approximately 1–10 mM). GSH is synthesized in the cytosol and is then transported to cellular compartments such as the mitochondria, nucleus, and ER, where redox buffering is required for organelle-specific functions. GSH eliminates hydrogen peroxide (H2O2) through a glutathione peroxidase-catalyzed reaction, producing water and oxidized GSH (GSSG), which is regenerated to GSH by glutathione reductase at the expense of NADPH (). Therefore, changes in the GSH levels in response to oxidative stress can reflect the redox buffering capacity of a particular cell type or cellular compartment. Moreover, GSH also acts as a regulator for ROS-triggered signal transmission. GSH reduces ROS-induced disulfides in signaling proteins, either by glutaredoxin or by forming S-glutathionylated proteins through a thiol-disulfide exchange reaction, thereby modulating the intensity and duration of redox signaling (). Furthermore, ESCs and inducible pluripotent SCs harbor particularly high GSH levels, which confer protection against unfavorable DNA damage (). Thus, monitoring the dynamic changes of GSH levels in living SCs is required to evaluate the redox buffering capacity and signaling processes that modulate SC functions during several physiological and pathological processes. However, obtaining a detailed understanding of the GSH-based redox system has thus far been limited owing to the lack of direct and reliable tools.Various techniques have been used to estimate GSH levels in living cells to date, including redox-sensitive fluorescent proteins such as rxYFP and roGFP (). Since the thiol-disulfide status of these fluorescent proteins is in equilibrium with that of cellular GSH, this method can provide information on the GSH/GSSG redox potential but cannot directly monitor the changes in GSH levels. In addition, the poor efficiency of transfection and consequent cellular damage hinder the application of this genetic method for a wide range of cell types. Several thiol-reactive fluorescent chemical dyes have also been developed as GSH sensors to overcome these problems (). However, these dyes still have drawbacks such as irreversibility, slow kinetics (), low fluorescence quantum yields (), or limited subcellular localization (). Moreover, previous works on GSH monitoring have not paid enough attention to the possible errors caused by reactive thiols in cellular proteins.To overcome the limitations of current GSH probes, we previously reported the synthesis of a coumarin derivative bearing a conjugated 2-cyanoacrylamide group, designated FreSHtracer (fluorescent real-time thiol tracer; href="/pmc/articles/PMC5830891/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A), which reacts reversibly with thiols in aqueous solutions (href="#bib5" rid="bib5" class=" bibr popnode">Cho and Choi, 2012). The present study showed that FreSHtracer is a powerful tool for real-time monitoring of GSH dynamics and heterogeneity in living SCs, and revealed that SCs cultured under conventional conditions exhibit the downregulation of GSH levels that results in deterioration of self-renewal and migration function. Therefore, our results prove that monitoring glutathione contents and dynamics in living SCs can be used as a marker to evaluate SC function and enhance its therapeutic potency.href="/pmc/articles/PMC5830891/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=5830891_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC5830891/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC5830891/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1FreSHtracer Is a Reversible and Ratiometric Probe for Glutathione(A) Changes in the absorption and fluorescence spectra of FreSHtracer when reacted with increasing concentrations of glutathione (GSH).(B) Fluorescence ratio (F510/F580; FR) of FreSHtracer plotted as a function of the GSH concentration.(C) Reversible reaction of FreSHtracer with GSH following treatment with diamide.(D and E) GSH-specific reaction of FreSHtracer. FreSHtracer equilibrated with GSH (5 mM; 15 min) was treated with H2O2 (0–2 mM) (D), and FreSHtracer equilibrated with oxidized GSH (GSSG, 5 mM) was treated with GSH reductase (5 U/mL) and 0.5 mM NADPH (E).(F and G) Fluorescence properties of FreSHtracer in dialyzed cell lysates. The FR change was monitored in dialyzed HeLa cell lysates (F) and then plotted against the protein concentration (G).(H) Effect of oxidants on the PSH-induced FR. Dialyzed cell lysates (25 mg/mL protein) were incubated with FreSHtracer (2 hr) and treated with diamide or H2O2 for 1 hr.(I and J) Fluorescence properties of FreSHtracer in PSH-GSH mixtures. FreSHtracer was added to dialyzed cell lysates (25 mg/mL protein) spiked with various GSH concentrations. The FR change was monitored for 20 min (I). The final FR value was plotted against the GSH concentration (J).(K) Effect of oxidants on the FR of the PSH-GSH mixture. PSH-GSH mixtures (25 mg/mL protein and 2 mM GSH) were incubated with FreSHtracer (2 hr) and treated with diamide or H2O2 for 1 hr.See also href="#mmc1" rid="mmc1" class=" supplementary-material">Figure S1.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介活性氧(ROS)是重要的信号分子,可调节细胞的代谢,增殖和生存()。 ROS的增加会诱导信号蛋白上半胱氨酸残基的巯基氧化,导致调节细胞功能的蛋白活性发生改变。尤其是,ROS介导的氧化在调节干细胞(SC)中的多种信号蛋白中起着重要作用,这些蛋白影响自我更新能力,多能性,生存力和基因组稳定性,包括OCT4,NRF2,FoxOs,APE1 / Ref- 1,ATM,HIF-1,p38和p53()。例如,OCT4是一种多能性相关的转录因子,在缺乏谷氨酰胺的条件下通过半胱氨酸氧化而失活,有利于胚胎SC(ESC)的分化和功能成熟。 Nrf2是氧化还原稳态的主要调节器,其破坏会影响胚胎和成年SC的功能,例如ESC中的自我更新和多能性,造血SC在骨髓中的迁移和滞留(),以及肠和气道基底SC的增生和体内平衡。因此,细胞氧化还原调节对于维持ESC和成年SC的干性和功能潜能至关重要。细胞氧化还原稳态取决于ROS的产生与通过酶和抗氧化剂分子如谷胱甘肽(GSH)(一种含硫醇的三肽)的消除之间的平衡。由于其高浓度(约1-10 mM),在维持氧化还原稳态中起着重要作用。 GSH在细胞质中合成,然后转运至细胞区室,例如线粒体,细胞核和ER,在这些区隔需要氧化还原缓冲才能实现细胞器特有的功能。 GSH通过谷胱甘肽过氧化物酶催化的反应消除过氧化氢(H2O2),生成水和氧化的GSH(GSSG),谷胱甘肽还原酶将其还原为GSH(NADPH)()。因此,响应氧化应激的GSH水平变化可以反映特定细胞类型或细胞区室的氧化还原缓冲能力。此外,GSH还充当ROS触发信号传输的调节器。 GSH可通过戊二糖还原酶或通过硫醇-二硫键交换反应形成S-谷胱甘肽化的蛋白来减少ROS诱导的信号蛋白中的二硫化物,从而调节氧化还原信号的强度和持续时间。此外,ESC和诱导型多能性SC的GSH含量特别高,从而可以防止不利的DNA损伤()。因此,需要监测活体SC中GSH水平的动态变化,以评估氧化还原缓冲能力和在几种生理和病理过程中调节SC功能的信号传导过程。然而,由于缺乏直接和可靠的工具,迄今为止对基于GSH的氧化还原系统的详细了解受到限制。迄今为止,已使用多种技术估算活细胞中GSH的水平,包括对氧化还原敏感的荧光蛋白作为rxYFP和roGFP()。由于这些荧光蛋白的硫醇-二硫键状态与细胞GSH处于平衡状态,因此该方法可以提供有关GSH / GSSG氧化还原电位的信息,但不能直接监测GSH水平的变化。另外,转染效率低和随后的细胞损伤阻碍了该遗传方法在多种细胞类型中的应用。还开发了几种硫醇反应性荧光化学染料作为GSH传感器来克服这些问题()。然而,这些染料仍具有诸如不可逆性,动力学慢(),荧光量子产率低()或亚细胞定位受限()的缺点。此外,先前的GSH监测工作并未充分注意细胞蛋白中反应性硫醇可能引起的错误。为克服当前GSH探针的局限性,我们先前报道了带有共轭2-氰基丙烯酰胺基团的香豆素衍生物的合成,指定的FreSHtracer(荧光实时硫醇示踪剂; href =“ / pmc / articles / PMC5830891 / figure / fig1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1” rid -ob =“ ob-fig1” co-legend-rid =“ lgnd_fig1”>图1 A),它与水溶液中的硫醇可逆地反应(href =“#bib5” rid =“ bib5”类=“ bibr popnode”> Cho和Choi,2012 )。本研究表明,FreSHtracer是实时监测活体SC中GSH动力学和异质性的强大工具,并揭示了在常规条件下培养的SC表现出GSH水平的下调,导致自我更新和迁移功能的恶化。因此,我们的结果证明,监测活体SC中的谷胱甘肽含量和动力学可以用作评估SC功能并增强其治疗效力的标志物。<!-fig ft0-> <!-fig mode = art f1-- > href="/pmc/articles/PMC5830891/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1"> <!-fig / graphic | fig / Alternatives / graphic mode =“ anchored” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image%20to%20zoom&p = PMC3&id = 5830891_gr1.jpg“ target =” tileshopwindow“> target="object" href="/pmc/articles/PMC5830891/figure/fig1/?report=objectonly">在单独的窗口中打开 class="figpopup" href="/pmc/articles/PMC5830891/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">图1 <!-标题a7-> FreSHtracer是谷胱甘肽的可逆且成比例的探针(A)与浓度增加反应时,FreSHtracer的吸收​​和荧光光谱变化谷胱甘肽(GSH)的处理。(B)荧光比(F510 / F580; FreSHtracer的FR)是GSH浓度的函数。(C)用二酰胺处理后FreSHtracer与GSH的可逆反应。(D和E)FreSHtracer的GSH特异性反应。用H2O2(0–2 mM)(D)处理用GSH平衡的FreSHtracer(5mM; 15分钟)(D),用GSH还原酶(5U / mL)和0.5处理用氧化的GSH(GSSG,5mM)平衡的FreSHtracer mM NADPH(E)。(F和G)FreSHtracer在透析细胞裂解液中的荧光特性。在透析的HeLa细胞裂解液(F)中监测FR变化,然后针对蛋白质浓度(G)作图。(H)氧化剂对PSH诱导的FR的影响。将透析的细胞裂解物(25 mg / mL蛋白)与FreSHtracer(2小时)孵育,并用二酰胺或H2O2处理1小时(I和J)FreSHtracer在PSH-GSH混合物中的荧光特性。将FreSHtracer添加到掺有各种GSH浓度的透析细胞裂解液(25 mg / mL蛋白)中。监测FR变化20分钟(I)。相对于GSH浓度绘制最终的FR值(J)。(K)氧化剂对PSH-GSH混合物的FR的影响。将PSH-GSH混合物(25 mg / mL蛋白和2 mM GSH)与FreSHtracer(2 hr)孵育并用二酰胺或H2O2处理1 hr。另请参见href =“#mmc1” rid =“ mmc1” class = “补充资料”>图S1 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号