首页> 美国卫生研究院文献>Stem Cell Reports >Anti-apoptotic Mutations Desensitize Human Pluripotent Stem Cells to Mitotic Stress and Enable Aneuploid Cell Survival
【2h】

Anti-apoptotic Mutations Desensitize Human Pluripotent Stem Cells to Mitotic Stress and Enable Aneuploid Cell Survival

机译:抗凋亡突变使人多能干细胞对有丝分裂压力不敏感并使非整倍体细胞存活

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionFor the safe use of human pluripotent stem cells (hPSCs) in regenerative medicine, they should be devoid of mutations that could render them or their differentiated progeny malignant upon transplantation into a patient (). One important question is whether genetic or epigenetic changes acquired during hPSC in vitro culture will affect the safety and efficacy of derivatives of hPSCs produced for therapeutic application (). While at low passage, most of the hPSC lines have normal diploid karyotype, the incidence of aneuploidy increases significantly with passage number, and gains of the whole or parts of chromosomes 1, 12, 17, and 20 are substantially more common than other changes (, ). Most likely, these genetic changes are selected because they confer a growth advantage (), which may be attributed to their ability to evade the bottlenecks that restrict the expansion of wild-type cells in culture, including mass cell death following plating, failure to re-enter the cell cycle, and the high death rate of daughter cells in incipient colonies ().The frequent appearance of hPSCs with gains of whole chromosomes suggests their susceptibility to chromosome segregation errors during mitosis. In somatic cells a key regulatory mechanism controlling accurate chromosome segregation is the mitotic checkpoint, which delays the onset of anaphase and arrests cells in prometaphase to correct the defects (). After prolonged prometaphase arrest, cells may either die or exit mitosis without proper chromosome separation, thereby forming tetraploid or aneuploid cells in G1 phase, a process termed mitotic slippage (). Cell fates following mitotic slippage include apoptosis, senescence, or re-entry into the cell cycle, with the latter often resulting in highly aberrant genomes (). The frequency of aberrant divisions in hPSCs and their behavior following the mitotic checkpoint activation is poorly characterized. High rates of death in hPSC cultures () suggest a reliance of cells on apoptosis for clearing genetically damaged cells. For example, hPSCs subjected to DNA-replication stress in S phase rapidly commit to apoptosis rather than initiate DNA repair mechanisms ().Given the important role of apoptosis in protecting the genome stability of a cell population, an increase in apoptotic threshold through overexpression of anti-apoptotic genes could provide a mechanism for survival of cells with genetic damage. This phenomenon, previously observed in cancer cells (), may be particularly pertinent to hPSCs. In a large-scale study of karyotype and copy-number variation (CNV) in hPSCs by the International Stem Cell Initiative (ISCI), 26% of karyotypically normal hPSC lines examined contained amplifications of a small region of the long arm of chromosome 20 (20q11.21) including the BCL2L1 gene. Subsequent studies identified increased expression levels of BCL-XL, the BCL2L1 anti-apoptotic isoform from the amplified chromosome 20q11.21 region, as an underlying cause for the enhanced survival of the CNV cells (, ). However, it remains unknown how acquired overexpression of BCL2L1 may affect the subsequent genetic stability of hPSCs.Here we show that hPSCs commit to apoptosis rapidly in response to nocodazole-induced prometaphase arrest or following a highly aberrant cell division due to high mitochondrial priming. After differentiation, hPSCs are no longer sensitive to prometaphase arrest. The proapoptotic gene NOXA is responsible for the highly sensitive mitochondrial apoptosis present in hPSCs. Knockout of NOXA by CRISPR in hPSCs or overexpression of the anti-apoptotic protein, BCL-XL, significantly reduced cell death caused by defective mitosis. BCL-XL overexpression or the presence of the BCL2L1 CNV had enhanced survival ability, altered mitochondrial morphology, and aneuploidy formation after perturbing mitosis. Our study reveals the vulnerability of hPSC mitosis and comprehensively assesses the biological consequence of gaining anti-apoptotic mutations in hPSC. These findings reveal an important roadmap that drives hPSC culture adaptation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介为了安全地将人类多能干细胞(hPSC)用于再生医学,他们应该不含可能在移植到患者体内后导致其或其分化后代恶变的突变()。一个重要的问题是在体外培养的hPSC期间获得的遗传或表观遗传变化是否会影响为治疗应用而生产的hPSC衍生物的安全性和功效()。在低传代时,大多数hPSC系具有正常的二倍体核型,非整倍性的发生率随着传代数的增加而显着增加,并且染色体1、12、17和20的全部或部分增益比其他改变更为普遍( ,)。选择这些遗传变化的原因很可能是因为它们具有增长优势(),这可能归因于其规避限制培养液中野生型细胞扩增的瓶颈的能力,包括平板接种后的大规模细胞死亡, -进入细胞周期,并在初期菌落中子细胞的死亡率很高。(hPSC)频繁出现,并带有完整的染色体,这表明它们在有丝分裂期间易受染色体分离错误的影响。在体细胞中,控制准确染色体分离的关键调节机制是有丝分裂检查点,它延迟了后期的开始并阻止了前中期的细胞来纠正缺陷。在延长前中期停滞后,细胞可能死亡或退出有丝分裂而没有正确的染色体分离,从而在G1期形成四倍体或非整倍体细胞,这一过程称为有丝分裂滑移()。有丝分裂滑移后的细胞命运包括凋亡,衰老或重新进入细胞周期,后者通常导致高度异常的基因组()。 hPSCs中异常分裂的频率及其在有丝分裂检查点激活后的行为表现得很差。 hPSC培养物中的高死亡率()表明细胞依赖凋亡来清除遗传受损的细胞。例如,在S期受到DNA复制压​​力的hPSC迅速发生凋亡而不是启动DNA修复机制()。鉴于凋亡在保护细胞群体基因组稳定性中的重要作用,通过过度表达细胞凋亡阈值增加抗凋亡基因可以为遗传损伤的细胞提供生存机制。以前在癌细胞中观察到的这种现象可能与hPSC特别相关。国际干细胞倡议组织(ISCI)对hPSC的核型和拷贝数变异(CNV)进行了大规模研究,其中26%的核型正常hPSC系包含20号染色体长臂小区域的扩增( 20q11.21),包括BCL2L1基因。随后的研究发现,来自扩增的20q11.21染色体区域的BCL2L1抗凋亡亚型BCL-XL的表达水平升高,是CNV细胞存活率提高的根本原因。然而,尚不清楚获得性BCL2L1的过表达如何影响hPSC的后续遗传稳定性。在这里,我们显示hPSC响应诺考达唑诱导的前中期停滞或由于高线粒体引发的高度异常细胞分裂而迅速发生凋亡。分化后,hPSC对前中期停滞不再敏感。促凋亡基因NOXA负责hPSC中存在的高度敏感的线粒体凋亡。 CRISPR在hPSC中敲除NOXA或抗凋亡蛋白BCL-XL的过表达,可显着减少有缺陷的有丝分裂引起的细胞死亡。 BCL-XL的过表达或BCL2L1 CNV的存在增强了生存能力,改变了线粒体,改变了线粒体的形态,并形成了非整倍性。我们的研究揭示了hPSC有丝分裂的脆弱性,并全面评估了在hPSC中获得抗凋亡突变的生物学结果。这些发现揭示了驱动hPSC文化适应的重要路线图。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号