首页> 美国卫生研究院文献>Stem Cell Reports >Human iPSC-Derived Retinal Pigment Epithelium: A Model System for Prioritizing and Functionally Characterizing Causal Variants at AMD Risk Loci
【2h】

Human iPSC-Derived Retinal Pigment Epithelium: A Model System for Prioritizing and Functionally Characterizing Causal Variants at AMD Risk Loci

机译:人类iPSC衍生的视网膜色素上皮:在AMD风险位点确定因果变异的优先级和功能特征的模型系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAge-related macular degeneration (AMD) is a leading cause of vision loss that affects 1.6 million people over the age of 50 years in the United States () and has limited therapeutic options (). Disease development manifests in progressive degeneration in response to oxidative stress and inflammation of the retinal pigment epithelium (RPE) (), a monolayer consisting of a few million cells most densely located in the macula of the eye (). AMD has a strong genetic component (), and through a large international study of 16,144 AMD cases and 17,832 controls, 52 independent AMD risk variants mapping to 34 AMD-associated loci have been identified (). As in many common diseases (, , , ), the majority of these loci have strongly associated variants in non-coding regions of the genome, suggesting that they may act through gene regulation. Regulatory variants that affect human disease, such as the variant that affects IRX3 expression in obesity (), can have strong effects, but it can be challenging to identify causal distal regulatory variants and link them with their target genes. Indeed, for AMD, while some candidate target genes have been identified (), the causal variants and the downstream processes by which they mediate their effects are generally unknown.Regulatory genetic variation is often cell-type specific and can be studied through genetic analysis of molecular traits such as gene regulation and expression (). However, characterizing genetic variation in human RPE is challenging because the number of RPE cells in the human eye is limited (), can be affected by lifetime environmental exposures, and requires invasive procedures to collect samples. Induced pluripotent stem cell-derived RPE (iPSC-RPE) is a promising alternative to human RPE for genetic studies as a virtually unlimited number of cells can be obtained with the same genetic background non-invasively. iPSC-RPE has been shown to display characteristics of mature human RPE including polygonal and pigmented morphology, polarity of protein expression and secretion, phagocytosis of photoreceptor outer segments, and maintenance of RPE phenotypes after transplantation into mouse retina (). Additionally, stem cell-derived RPE have been effectively transplanted into rodent and primate models, supporting their relevance in vivo (href="#bib4" rid="bib4" class=" bibr popnode">Davis et al., 2017, href="#bib17" rid="bib17" class=" bibr popnode">Kamao et al., 2014, href="#bib36" rid="bib36" class=" bibr popnode">Stanzel et al., 2014). Thus, iPSC-RPE could be an effective model system for functionally characterizing regulatory variation associated with AMD.The identification and functional characterization of causal genetic variants has been improved through fine-mapping algorithms that can incorporate diverse epigenetic annotations. For example, accessible chromatin and active regulatory regions such as promoters and enhancers marked by histone 3 lysine-27 acetylation (H3K27ac) have been shown to be enriched for genetic variants associated with human diseases in cell types relevant for disease and can improve the prioritization of genome-wide association study (GWAS) causal variants through fine-mapping strategies (href="#bib30" rid="bib30" class=" bibr popnode">Pickrell, 2014). Additionally, while many GWAS loci harbor genes that have been implicated in AMD, such as VEGFA, which encodes the vascular endothelial growth factor (VEGF) protein that is targeted by three current treatments for AMD (href="#bib11" rid="bib11" class=" bibr popnode">Gragoudas et al., 2004, href="#bib15" rid="bib15" class=" bibr popnode">Heier et al., 2012, href="#bib33" rid="bib33" class=" bibr popnode">Rosenfeld et al., 2006), the causal risk variant and the mechanism of increased disease risk is not known. Thus, the molecular characterization of gene expression and regulatory regions in iPSC-RPE could improve fine mapping of AMD and lead to insights into mechanisms underlying genetic risk variants.To investigate the utility of iPSC-RPE as a model system to characterize AMD risk variants, we generated iPSC-RPE from six human subjects and integrated gene expression, chromatin accessibility, and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) data with complementary published data from human adult subjects to identify potential causal variants at AMD risk loci. We show that the iPSC-RPE shows morphological and molecular characteristics that are similar to those of native RPE including a characteristic polygonal shape, strong melanin pigmentation and expression, and strong zonula occludens 1 (ZO-1), bestrofin 1 (BEST1), and microphthalmia-associated transcription factor (MITF) immunostaining. We show that iPSC-RPE gene expression profiles are highly similar to that of human fetal RPE, and that their ATAC-seq (assay for transposase-accessible chromatin using sequencing) peaks are enriched for relevant transcription factor motifs. We performed fine mapping of AMD risk loci integrating the molecular data from iPSC-RPE, human fetal RPE, and published human retina and RPE samples. At one locus, VEGFA, we show that the rs943080 risk allele is associated with regulatory protein binding in iPSC-RPE in a potentially disease-dependent manner, and that the risk allele results in decreased overall VEGFA expression, potentially through regulation by a non-coding transcript. These results establish a molecular hypothesis for the VEGFA genetic risk locus on AMD and illustrate the potential of iPSC-RPE as a model system to study the molecular function of genetic variation associated with AMD.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介与年龄有关的黄斑变性(AMD)是导致视力下降的主要原因,其影响1.6美国有50万人(年龄在50岁以上),并且治疗选择有限()。疾病的发展表现为对氧化应激和视网膜色素上皮(RPE)()的反应进行性变性,RPE是由几百万个细胞组成的单层细胞,最密集地位于眼睛的黄斑()。 AMD具有很强的遗传成分(),并且通过对16,144个AMD病例和17,832个对照的大规模国际研究,已经鉴定出52个独立的AMD风险变异体,它们映射到34个与AMD相关的基因座。像在许多常见疾病(,,,)中一样,这些基因座中的大多数在基因组的非编码区域具有强烈相关的变体,表明它们可能通过基因调控发挥作用。影响人类疾病的调控变体,例如影响肥胖症中IRX3表达的变体(),可能具有很强的作用,但要确定因果性远侧调控变体并将其与靶基因联系起来可能是具有挑战性的。确实,对于AMD来说,虽然已经识别出一些候选靶基因(),但其致病性变异及其介导其作用的下游过程通常是未知的。调节性遗传变异通常是细胞类型特异性的,可以通过遗传分析来研究。分子特性,例如基因调控和表达()。但是,表征人RPE的遗传变异具有挑战性,因为人眼中RPE细胞的数量有限(),可能会受到终生环境暴露的影响,并且需要侵入性程序来收集样品。诱导多能干细胞衍生的RPE(iPSC-RPE)是人类RPE进行遗传学研究的有前途的替代方法,因为利用相同的遗传背景无创地获得了几乎无限数量的细胞。 iPSC-RPE已显示出成熟的人类RPE的特征,包括多边形和色素形态,蛋白质表达和分泌的极性,光感受器外部节段的吞噬作用以及移植到小鼠视网膜后RPE表型的维持()。此外,源自干细胞的RPE已被有效地移植到啮齿动物和灵长类动物模型中,从而支持了它们在体内的相关性(href="#bib4" rid="bib4" class=" bibr popnode"> Davis等,2017 < / a>,href="#bib17" rid="bib17" class=" bibr popnode">卡莫等人,2014 ,href =“#bib36” rid =“ bib36” class = “ bibr popnode”> Stanzel等人,2014 )。因此,iPSC-RPE可能是一个有效地表征与AMD相关的调控变异的模型系统。通过精细映射算法可以改进因果遗传变异的鉴定和功能表征,该算法可以纳入多种表观遗传学注释。例如,已证明以组蛋白3赖氨酸27乙酰化(H3K27ac)为标记的可利用的染色质和活性调控区(如启动子和增强子)在与疾病相关的细胞类型中富含与人类疾病相关的遗传变异,并且可以改善与疾病相关的细胞的优先级。通过精细映射策略进行全基因组关联研究(GWAS)因果变异(href="#bib30" rid="bib30" class=" bibr popnode"> Pickrell,2014 )。此外,虽然许多GWAS基因座都包含与AMD有关的基因,例如VEGFA,其编码血管内皮生长因子(VEGF)蛋白,而这是目前针对AMD的三种治疗方法所针对的(href =“#bib11” rid = “ bib11” class =“ bibr popnode”> Gragoudas等,2004 ,href="#bib15" rid="bib15" class=" bibr popnode"> Heier等,2012 ,href="#bib33" rid="bib33" class=" bibr popnode"> Rosenfeld et al。,2006 ),因果风险变量和疾病风险增加的机制尚不清楚。因此,iPSC-RPE中基因表达和调控区的分子表征可以改善AMD的精细定位,并有助于深入了解遗传风险变异的潜在机制。为了研究iPSC-RPE作为表征AMD风险变异的模型系统的实用性,我们从六名人类受试者中产生了iPSC-RPE,并整合了基因表达,染色质可及性和H3K27ac染色质免疫沉淀测序(ChIP-seq)数据,以及来自人类成年受试者的补充公开数据,以鉴定AMD风险基因座的潜在因果变体。我们显示iPSC-RPE表现出与天然RPE相似的形态和分子特征,包括特征性的多边形形状,强烈的黑色素色素沉着和表达以及强烈的小带闭塞1(ZO-1),贝斯特罗芬1(BEST1),以及小眼症相关转录因子(MITF)免疫染色。我们显示,iPSC-RPE基因表达谱与人类胎儿RPE高度相似,并且它们的ATAC-seq(使用测序法测定转座酶可进入的染色质)峰富含相关的转录因子基序。我们对AMD风险基因座进行了精细定位,整合了来自iPSC-RPE,人类胎儿RPE和已发表的人类视网膜和RPE样本的分子数据。在一个场所VEGFA,我们显示rs943080风险等位基因与iPSC-RPE中的调节蛋白结合具有潜在的疾病依赖性,并且该风险等位基因可能通过非编码笔录。这些结果为AMD上的VEGFA遗传风险位点建立了分子假设,并说明了iPSC-RPE作为模型系统研究与AMD相关的遗传变异的分子功能的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号