首页> 美国卫生研究院文献>Autophagy >Mitochondrial division prevents neurodegeneration
【2h】

Mitochondrial division prevents neurodegeneration

机译:线粒体分裂防止神经变性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mitochondrial division is mediated by the conserved dynamin-related GTPase DNM1L/DRP1. DNM1L assembles onto the surface of mitochondria and constricts this tubular organelle. Alterations in mitochondrial division are linked to many neurodegenerative diseases. However, the in vivo function of mitochondrial division is poorly understood. In our recent paper, we studied the physiological role of mitochondrial division in postmitotic neurons using the cre-loxP system. We found that the loss of DNM1L resulted in increased oxidative damage in mitochondria, impaired respiration and neurodegeneration in postmitotic neurons. Suggesting a decrease in mitochondrial turnover, mitophagy-related proteins such as LC3, SQSTM1/p62 and ubiqutin accumulated in division-defective mitochondria. These findings suggest that mitochondrial division functions as an important quality control mechanism that suppresses oxidative damage and neurodegeneration in vivo class="kwd-title">Keywords: mitochondrial division, DNM1L/DRP1, neurodegeneration, oxidative stress, mitophagy, parkinMitochondria continuously divide and fuse, and the balance between division and fusion determines organelle size, number and morphology. In many cell types, such as mouse embryonic fibroblasts (MEFs), the loss of mitochondrial division leads to interconnected, elongated mitochondria due to unopposed fusion, and the loss of mitochondrial fusion generates many small mitochondria due to ongoing division. Mitochondrial division is mediated by the dynamin-related GTPase DNM1L, which drives constriction by assembling into filaments around mitochondria through interactions with DNM1L receptor proteins. Studies on human diseases have suggested that neurons are highly dependent on mitochondrial division for their survival. For example, a mutation in DNM1L causes postneonatal death accompanied by neurodegeneration. In addition, alterations in mitochondrial division have been implicated in many aging-related neurodegenerative disorders such as Alzheimer, Huntington and Parkinson diseases. Therefore, it is important to understand the role of mitochondrial division in neurons and other cell types. However, it is largely unknown why mitochondria divide. In our recent paper, we investigated the physiological and cellular function of DNM1L in postmitotic neurons using animal and cell culture systems, with particular focus on cerebellar Purkinje cells since these neurons highly express DNM1L.We deleted Dnm1l specifically in postmitotic Purkinje cells by crossing mice that carry a floxed allele of Dnm1l to a transgenic mouse line that expresses cre recombinase from the Purkinje cell-specific L7 promoter at 1 mo of age (L7-Drp1KO mice). Upon the loss of DNM1L, mitochondria, which are short tubules in the wild type, elongated and then became large spheres (). We found similar changes in mitochondrial morphology when Dnm1l was deleted in cultured Purkinje cells in vitro. This large, spherical morphology was in sharp contrast to the interconnected, long tubules of mitochondria observed in Dnm1l-null MEFs. The mitochondria in Dnm1l-null Purkinje cells accumulated oxidative damage as shown by immunofluorescence with anti-hydroxynonenal antibodies, which recognize peroxidation of proteins and lipids. This oxidative damage was responsible for the formation of large spherical mitochondria, since treating with antioxidants such as N-acetylcysteine, coenzyme Q10 and mito Q resulted in elongated mitochondria similar to those of Dnm1l-null MEFs. Supporting this notion, treating Dnm1l-null MEFs with hydrogen peroxide converted elongated mitochondrial tubules into large round structures.>Figure 1. Mitochondrial division is essential for the maintenance of mitochondrial function in Purkinje cells.
机译:线粒体分裂由保守的与动力有关的GTPase DNM1L / DRP1介导。 DNM1L组装到线粒体表面并收缩该管状细胞器。线粒体分裂的改变与许多神经退行性疾病有关。然而,对线粒体分裂的体内功能了解甚少。在我们最近的论文中,我们使用cre-loxP系统研究了线粒体分裂在有丝分裂后神经元中的生理作用。我们发现,DNM1L的丧失导致线粒体中的氧化损伤增加,有丝分裂后神经元的呼吸功能受损和神经变性。这提示线粒体周转减少,线粒体相关蛋白(例如LC3,SQSTM1 / p62和泛素)积累在分裂缺陷的线粒体中。这些发现表明线粒体分裂是抑制体内氧化损伤和神经退行性变的重要质量控制机制。 class =“ kwd-title”>关键字:线粒体分裂,DNM1L / DRP1,神经退行性变,氧化应激,线粒体,帕金森线粒体不断分裂和融合,分裂与融合之间的平衡决定了细胞器的大小,数量和形态。在许多细胞类型中,例如小鼠胚胎成纤维细胞(MEF),线粒体分裂的丧失会因无对位融合而导致相互连接的细长线粒体,而线粒体融合的丧失会由于分裂而产生许多小的线粒体。线粒体分裂是由与动力蛋白有关的GTPase DNM1L介导的,该蛋白通过与DNM1L受体蛋白相互作用组装成线粒体周围的细丝来驱动收缩。关于人类疾病的研究表明,神经元的生存高度依赖线粒体分裂。例如,DNM1L中的突变会导致新生儿死亡,并伴有神经退行性变。另外,线粒体分裂的改变已经牵涉到许多与衰老相关的神经退行性疾病,例如阿尔茨海默氏病,亨廷顿病和帕金森氏病。因此,重要的是了解线粒体分裂在神经元和其他细胞类型中的作用。但是,线粒体为什么分裂基本上是未知的。在最近的论文中,我们使用动物和细胞培养系统研究了DNM1L在有丝分裂后神经元中的生理和细胞功能,特别是小脑浦肯野细胞,因为这些神经元高度表达DNM1L。我们通过交叉小鼠删除了有丝分裂后浦肯野细胞中的Dnm1l。携带Dnm111的等位基因到转基因小鼠品系中,该品系从1岁时的浦肯野细胞特异性L7启动子表达cre重组酶(L7-Drp1KO小鼠)。在DNM1L丢失后,线粒体(野生型的短小管)伸长并变成大球体()。当在体外培养的浦肯野细胞中删除Dnm11时,我们发现线粒体形态发生类似变化。这种大的球形形态与Dnm11-null MEF中观察到的相互连接的线粒体长小管形成鲜明对比。 Dnm11-null Purkinje细胞中的线粒体积累了氧化损伤,如抗羟基壬烯醛抗体的免疫荧光法所显示的那样,它可以识别蛋白质和脂质的过氧化作用。这种氧化损伤是形成大球形线粒体的原因,因为用抗氧化剂(例如N-乙酰半胱氨酸,辅酶Q10和mito Q)处理后,线粒体伸长了,类似于Dnm11-null MEF。支持这一观点的是,用过氧化氢将Dnm11-null MEF转化为细长的线粒体小管,变成大的圆形结构。<!-fig ft0-> <!-fig mode = article f1-> <!-标题a7-> >图1。线粒体分裂对于维持Purkinje细胞中的线粒体功能至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号