首页> 美国卫生研究院文献>Stem Cell Reports >Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters
【2h】

Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters

机译:监测人类诱导的多能干细胞衍生的心肌细胞与遗传编码的钙和电压荧光记者。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe ability to reprogram adult somatic cells into pluripotent stem cells by a set of transcription factors has revolutionized biomedical research (, ). The generated human-induced pluripotent stem cells (hiPSCs) can be coaxed to differentiate into a variety of cell lineages (including cardiomyocytes [, ]) that can then be utilized for the development of autologous cell-replacement therapies, disease modeling, and drug discovery ().In the cardiac field, hiPSC lines were established from healthy individuals (, ) and from patients inflicted with acquired (heart failure) () and inherited cardiac disorders. Among the latter, patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) models of different inherited arrhythmogenic syndromes (, , , , , ) and diverse cardiomyopathies (, href="#bib29" rid="bib29" class=" bibr popnode">Sun et al., 2012) were established. The patient/disease-specific hiPSC-CMs were shown to recapitulate the disease phenotypes in culture, to provide mechanistic insights into disease processes, and to evaluate existing and novel therapies. Similarly, hiPSC-CMs were also proposed as a valuable tool for drug development (href="#bib24" rid="bib24" class=" bibr popnode">Mercola et al., 2013), demonstrating, for example, their value for safety pharmacology by screening the proarrhythmic effects of certain compounds (href="#bib5" rid="bib5" class=" bibr popnode">Braam et al., 2013, href="#bib21" rid="bib21" class=" bibr popnode">Liang et al., 2013, href="#bib35" rid="bib35" class=" bibr popnode">Zwi et al., 2009).One of the key prerequisites for achieving the goals of these applications is to develop efficient tools to study the functional properties of the hiPSC-CMs and specifically of their electrophysiological and excitation-contraction-coupling properties. To this end, different electrophysiological techniques (patch-clamp (href="#bib10" rid="bib10" class=" bibr popnode">Itzhaki et al., 2011a) and multielectrode extracellular potential recordings [href="#bib35" rid="bib35" class=" bibr popnode">Zwi et al., 2009]) and imaging modalities (using voltage- or calcium-sensitive fluorescent dyes) were utilized. While providing valuable information, these methodologies also display inherent limitations, such as relatively low-throughput (patch-clamp), limited electrophysiological information (extracellular recordings), phototoxicity (voltage and calcium sensitive dyes), and inability to obtain long-term repeated recordings (patch-clamp, fluorescent dyes). Consequentially, a method that allows long-term, serial, and cellular functional phenotyping of healthy and diseased hiPSC-CMs is direly needed, especially if it can be achieved in a non-invasive, high-resolution, and large-scale manner.The developments in the field of genetically encoded fluorescent indicators may provide a possible solution to the aforementioned challenges. Genetically encoded indicators are composed of a sensing element, which is usually fused to an autofluorescent protein (like circularly permuted enhanced GFP; cpEGFP) that alters its fluorescent intensity as a result of conformational changes in the sensing element. While utilized in numerous neuroscience-related experimental models (href="#bib2" rid="bib2" class=" bibr popnode">Akemann et al., 2010, href="#bib6" rid="bib6" class=" bibr popnode">Cao et al., 2013, href="#bib9" rid="bib9" class=" bibr popnode">Grienberger and Konnerth, 2012, href="#bib22" rid="bib22" class=" bibr popnode">Looger and Griesbeck, 2012, href="#bib32" rid="bib32" class=" bibr popnode">Tian et al., 2009), the use of similar indicators in non-neuronal tissues, such as the heart, has been more limited (href="#bib1" rid="bib1" class=" bibr popnode">Addis et al., 2013, href="#bib8" rid="bib8" class=" bibr popnode">Chong et al., 2014, href="#bib15" rid="bib15" class=" bibr popnode">Kaestner et al., 2014, href="#bib20" rid="bib20" class=" bibr popnode">Leyton-Mange et al., 2014). Here, we aimed to transfer these emerging technologies to the cardiac field, specifically focusing on genetically encoded calcium indicators (GECIs) (href="#bib9" rid="bib9" class=" bibr popnode">Grienberger and Konnerth, 2012, href="#bib15" rid="bib15" class=" bibr popnode">Kaestner et al., 2014, href="#bib32" rid="bib32" class=" bibr popnode">Tian et al., 2009) and genetically encoded voltage indicators (GEVIs) (href="#bib13" rid="bib13" class=" bibr popnode">Jin et al., 2012, href="#bib17" rid="bib17" class=" bibr popnode">Kralj et al., 2012, href="#bib20" rid="bib20" class=" bibr popnode">Leyton-Mange et al., 2014), in an attempt to establish experimental platforms to monitor the functional activity of hiPSC-CMs. To this end, we aimed to express GCaMP5G (href="#bib1" rid="bib1" class=" bibr popnode">Addis et al., 2013, href="#bib32" rid="bib32" class=" bibr popnode">Tian et al., 2009), a GECI that displays improved dynamic range, improved sensitivity, and maintains relatively stable expression levels, and ArcLight A242 (href="#bib6" rid="bib6" class=" bibr popnode">Cao et al., 2013, href="#bib13" rid="bib13" class=" bibr popnode">Jin et al., 2012, href="#bib20" rid="bib20" class=" bibr popnode">Leyton-Mange et al., 2014), a new variant of the Ciona intestinalis voltage-sensitive (CiVS)-based fluorescent protein voltage sensor (href="#bib3" rid="bib3" class=" bibr popnode">Barnett et al., 2012, href="#bib26" rid="bib26" class=" bibr popnode">Murata et al., 2005) super-family, in both healthy and diseased hiPSC-CMs.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介通过一组转录因子将成人体细胞重编程为多能干细胞的能力具有彻底改变了生物医学研究(,)。可以诱导产生的人诱导多能干细胞(hiPSC)分化为多种细胞谱系(包括心肌细胞[,]),然后将其用于自体细胞替代疗法的开发,疾病建模和药物发现()在心脏领域,从健康个体()和患有获得性(心力衰竭)()和遗传性心脏病的患者中建立hiPSC品系。在后者中,不同遗传性心律失常综合症(,,,,,)和各种心肌病(,href =“#bib29” rid =“ bib29” class =“ bibr popnode“> Sun等人,2012 )成立了。已显示患者/疾病特异性的hiPSC-CM可以概括文化中的疾病表型,提供对疾病过程的机械洞察力,并评估现有和新颖的疗法。同样,hiPSC-CM也被认为是药物开发的宝贵工具(href="#bib24" rid="bib24" class=" bibr popnode"> Mercola等人,2013 ),证明了,例如,通过筛选某些化合物的心律失常作用,其对安全性药理学的价值(href="#bib5" rid="bib5" class=" bibr popnode"> Braam等人,2013 ,href =“#bib21” rid =“ bib21” class =“ bibr popnode”> Liang等人,2013 ,href="#bib35" rid="bib35" class=" bibr popnode"> Zwi等人,2009 )。实现这些应用目标的关键先决条件之一是开发有效的工具来研究hiPSC-CM的功能特性,尤其是其电生理和激发-收缩-耦合特性。为此,采用了不同的电生理技术(膜片钳(href="#bib10" rid="bib10" class=" bibr popnode"> Itzhaki等人,2011a )和多电极细胞外电位记录[<使用了href =“#bib35” rid =“ bib35” class =“ bibr popnode”> Zwi等人,2009 ])和成像方式(使用电压敏感或钙敏感的荧光染料)。这些方法在提供有价值的信息的同时,还显示出固有的局限性,例如相对较低的通量(膜片钳),有限的电生理信息(细胞外记录),光毒性(电压和钙敏感染料)以及无法获得长期重复记录(膜夹,荧光染料)。因此,迫切需要一种能够对健康和患病的hiPSC-CM进行长期,连续和细胞功能表型鉴定的方法,尤其是如果可以非侵入性,高分辨率和大规模方式实现的方法。基因编码荧光指示剂领域的发展可能为上述挑战提供可能的解决方案。遗传编码的指示剂由一个传感元件组成,通常与自体荧光蛋白(如圆形排列的增强型GFP; cpEGFP)融合,该蛋白会由于传感元件中构象变化而改变其荧光强度。虽然在许多与神经科学相关的实验模型中使用(href="#bib2" rid="bib2" class=" bibr popnode"> Akemann等人,2010 ,href =“#bib6” rid =“ bib6” class =“ bibr popnode”> Cao等人,2013 ,href="#bib9" rid="bib9" class=" bibr popnode"> Grienberger and Konnerth,2012 ,href="#bib22" rid="bib22" class=" bibr popnode"> Looger and Griesbeck,2012 ,href =“#bib32” rid =“ bib32” class =“ bibr popnode “> Tian等人,2009 ),在非神经组织(例如心脏)中使用类似的指标受到了更大的限制(href =”#bib1“ rid =” bib1“ class = “ bibr popnode”> Addis等,2013 ,href="#bib8" rid="bib8" class=" bibr popnode"> Chong等,2014 ,href =“#bib15” rid =“ bib15” class =“ bibr popnode”>凯斯特纳等人,2014 ,href="#bib20" rid="bib20" class=" bibr popnode">莱顿- Mange等人,2014 )。在这里,我们旨在将这些新兴技术转移到心脏领域,特别是专注于基因编码的钙指示剂(GECI)(href="#bib9" rid="bib9" class=" bibr popnode"> Grienberger和Konnerth,2012年,href="#bib15" rid="bib15" class=" bibr popnode"> Kaestner et al。,2014 ,href =“#bib32” rid =“ bib32”类=“ bibr popnode”> Tian等人,2009 )和遗传编码的电压指示器(GEVI)(href="#bib13" rid="bib13" class=" bibr popnode"> Jin等人。 ,2012 ,href="#bib17" rid="bib17" class=" bibr popnode">克拉里(Kralj)等人,2012 ,href =“#bib20” rid =“ bib20” class =“ bibr popnode “> Leyton-Mange等人,2014 ),以试图建立实验平台来监测hiPSC-CM的功能活性。为此,我们旨在表达GCaMP5G(href="#bib1" rid="bib1" class=" bibr popnode"> Addis等人,2013 ,href =“#bib32” rid =“ bib32” class =“ bibr popnode”> Tian等人,2009 ),这是一种GECI,可以显示出更好的动态范围,更高的灵敏度并保持相对稳定的表达水平,以及ArcLight A242(href =“ #bib6“ rid =” bib6“ class =” bibr popnode“> Cao等人,2013 ,href="#bib13" rid="bib13" class=" bibr popnode"> Jin等人。 ,2012 ,href="#bib20" rid="bib20" class=" bibr popnode"> Leyton-Mange等人,2014 ),一种新的Ciona肠道电压变体,基于敏感(CiVS)的荧光蛋白电压传感器(href="#bib3" rid="bib3" class=" bibr popnode"> Barnett et al。,2012 ,href =“#bib26” rid =“ bib26” class =“ bibr popnode”> Murata等人,2005 )的超家族,既有健康人也有患病的hiPSC-CM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号