首页> 美国卫生研究院文献>Stem Cell Reports >Human Engineered Heart Tissue: Analysis of Contractile Force
【2h】

Human Engineered Heart Tissue: Analysis of Contractile Force

机译:人体工程心脏组织:收缩力分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe advent of human induced pluripotent stem cell (hiPSC) technology and protocols to efficiently differentiate cardiomyocytes (CM) () have opened the perspective to use hiPSC-CM for cardiac research or drug development. This biotechnology advancement also boosted the development of test systems to evaluate hiPSC-CM electrophysiology (reviewed in ), impedance (, ), field potentials (, , , , , ), action potentials and calcium transients with fluorescent dyes, and cellular shortening video-optically (, , , ). These assays may improve preclinical drug development and safety toxicology, because current systems are based either on recombinant cell lines or animal cells, both susceptible to typical shortcomings. HiPSC-CM promise an intact, human cardiomyocyte context in which a drug and/or principle is tested. Moreover, patient-specific cell lines offer (1) the perspective of testing drugs in a wide spectrum of genetic backgrounds and (2) individualized risk prediction and testing of adverse drug effects. Different technologies have been employed for predictive toxicology application (, href="#bib45" rid="bib45" class=" bibr popnode">Pointon et al., 2015), and many studies have successfully demonstrated disease-specific phenotypes in hiPSC-CM from patients with inherited cardiac diseases (reviewed in href="#bib38" rid="bib38" class=" bibr popnode">Moretti et al., 2013, href="#bib27" rid="bib27" class=" bibr popnode">Karakikes et al., 2015). Most test systems use hiPSC-CM as 2D layers on rigid plastic cell-culture dishes that do not allow the cells to perform physiological auxotonic contractions (href="#bib41" rid="bib41" class=" bibr popnode">Nishimura et al., 2004). Contractile function, the main feature of the heart, can only be analyzed in a very restricted manner.We have developed protocols to form 3D force-generating engineered heart tissues (EHTs; href="#bib10" rid="bib10" class=" bibr popnode">Eschenhagen et al., 2012, href="#bib21" rid="bib21" class=" bibr popnode">Hirt et al., 2014). This follows the principle of hydrogel formation with dissociated cardiomyocytes in casting molds and maintenance with a defined preload. Cardiomyocytes remodel the hydrogel, align along force lines, increase in size, and form a coherently beating syncytium. Potential advantages of the EHT system for preclinical drug development and safety toxicology are 2-fold. (1) It allows monitoring effects of drugs on all major parameters of heart function: force, pacemaking activity and contraction, and relaxation kinetics. (2) The analysis is done under stable conditions that resemble cardiac physiology, i.e., 3D heart-like muscle strips that contract under auxotonic, work-performing, steady-state conditions.First publications with EHTs from human embryonic stem cells or hiPSC-CM demonstrated the principal feasibility to generate human constructs and some basic characterization (href="#bib49" rid="bib49" class=" bibr popnode">Schaaf et al., 2011, href="#bib56" rid="bib56" class=" bibr popnode">Tulloch et al., 2011, href="#bib29" rid="bib29" class=" bibr popnode">Kensah et al., 2013, href="#bib42" rid="bib42" class=" bibr popnode">Nunes et al., 2013, href="#bib55" rid="bib55" class=" bibr popnode">Thavandiran et al., 2013). However, neither we nor others have yet shown that EHTs from hiPSC-CM are indeed suitable for the proposed purpose, i.e., whether they faithfully replicate effects on indicator compounds affecting rate, force, and contraction kinetics. This is particularly important for inotropes, since modulators of inotropy are a mainstay of cardiac drug development and new concepts are urgently needed (href="#bib15" rid="bib15" class=" bibr popnode">Francis et al., 2014). The present study therefore set out to answer the following questions. (1) Do drugs known to interfere with pacemaking mechanisms in the sinoatrial node (SAN) affect the spontaneous beating rate of hiPSC-EHTs? (2) Do positive and negative inotropic drugs affect contraction force of hiPSC-EHTs in a manner similar to that of human heart muscle strips? (3) Do drugs with known and supposedly specific effects on individual ion currents affect contractile function? (4) Is prolongation of relaxation time a surrogate for prolongation of repolarization and proarrhythmic risk?
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介人类诱导的多能干细胞(hiPSC)技术和协议的问世,可有效区分心肌细胞(CM)()开启了将hiPSC-CM用于心脏研究或药物开发的前景。生物技术的进步也促进了测试系统的开发,以评估hiPSC-CM电生理学(综述于),阻抗(,),场电势(、、、、、、),动作电势和使用荧光染料的钙瞬变以及细胞缩短视频-光学地(,,,,)。这些测定法可以改善临床前药物开发和安全毒理学,因为当前的系统基于重组细胞系或动物细胞,两者都容易受到典型缺陷的影响。 HiPSC-CM有望在完整的人类心肌细胞环境中对药物和/或原理进行测试。而且,患者特异性细胞系提供(1)在广泛的遗传背景下测试药物的观点,以及(2)个性化的风险预测和药物不良作用的测试。预测毒理学应用已采用了不同的技术(href="#bib45" rid="bib45" class=" bibr popnode"> Pointon等人,2015 ),许多研究已成功地证明了疾病遗传性心脏病患者的hiPSC-CM特定表型(在href="#bib38" rid="bib38" class=" bibr popnode"> Moretti et al。,2013 ,href =“#bib27” rid =“ bib27” class =“ bibr popnode”> Karakikes等人,2015 )。大多数测试系统将hiPSC-CM用作刚性塑料细胞培养皿上的2D层,这些培养皿不允许细胞执行生理性的声张收缩(href="#bib41" rid="bib41" class=" bibr popnode"> Nishimura等,2004 )。收缩功能是心脏的主要特征,只能以非常有限的方式进行分析。我们已经开发了形成3D力产生工程心脏组织(EHT; href =“#bib10” rid =“ bib10”类=“ bibr popnode”> Eschenhagen等,2012 ,href="#bib21" rid="bib21" class=" bibr popnode"> Hirt等,2014 )。这遵循在铸模中与解离的心肌细胞形成水凝胶的原理,并以预定的预紧力进行维护。心肌细胞重塑水凝胶,沿力线排列,尺寸增大,并形成连贯的搏动合胞体。 EHT系统在临床前药物开发和安全毒理学方面的潜在优势是2倍。 (1)它允许监视药物对心脏功能的所有主要参数的作用:力量,起搏活动和收缩以及放松动力学。 (2)分析是在类似于心脏生理的稳定条件下进行的,即3D心脏样条带在声压,工作表现,稳态条件下收缩。人胚胎干细胞或hiPSC-CM的EHT首次发表证明了生成人类构建体的主要可行性和一些基本特征(href="#bib49" rid="bib49" class=" bibr popnode"> Schaaf等人,2011 ,href =“# bib56“ rid =” bib56“ class =” bibr popnode“> Tulloch等人,2011 ,href="#bib29" rid="bib29" class=" bibr popnode">肯萨等人, 2013 ,href="#bib42" rid="bib42" class=" bibr popnode"> Nunes等人,2013 ,href =“#bib55” rid =“ bib55” class =“ bibr popnode”> Thavandiran等人,2013 )。但是,我们和其他人都尚未表明,hiPSC-CM的EHT确实适合于拟议的目的,即,它们是否忠实地复制了对指示化合物的影响速率,作用力和收缩动力学的影响。这对正性肌力尤为重要,因为正性肌力调节剂是心脏药物开发的支柱,迫切需要新的概念(href="#bib15" rid="bib15" class=" bibr popnode"> Francis等人,, 2014 )。因此,本研究着手回答以下问题。 (1)已知会干扰窦房结(SAN)起搏机制的药物会影响hiPSC-EHT的自发搏动率吗? (2)正性和负性正性肌力药物是否会以类似于人心肌条的方式影响hiPSC-EHT的收缩力? (3)对单个离子流具有已知作用和假定作用的药物会影响收缩功能吗? (4)放松时间的延长是否代表复极化和心律失常风险的延长?

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号