首页> 美国卫生研究院文献>The Journal of Neuroscience >Activity-Dependent Remodeling of Drosophila Olfactory Sensory Neuron Brain Innervation during an Early-Life Critical Period
【2h】

Activity-Dependent Remodeling of Drosophila Olfactory Sensory Neuron Brain Innervation during an Early-Life Critical Period

机译:在生命的关键时期果蝇嗅觉感觉神经元脑神经活动依赖于重塑。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Critical periods are windows of development when the environment has a pronounced effect on brain circuitry. Models of neurodevelopmental disorders, including autism spectrum disorders, intellectual disabilities, and schizophrenia, are linked to disruption of critical period remodeling. Critical periods open with the onset of sensory experience; however, it remains unclear exactly how sensory input modifies brain circuits. Here, we examine olfactory sensory neuron (OSN) innervation of the Drosophila antennal lobe of both sexes as a genetic model of this question. We find that olfactory sensory experience during an early-use critical period drives loss of OSN innervation of antennal lobe glomeruli and subsequent axon retraction in a dose-dependent mechanism. This remodeling does not result from olfactory receptor loss or OSN degeneration, but rather from rapid synapse elimination and axon pruning in the target olfactory glomerulus. Removal of the odorant stimulus only during the critical period leads to OSN reinnervation, demonstrating that remodeling is transiently reversible. We find that this synaptic refinement requires the OSN-specific olfactory receptor and downstream activity. Conversely, blocking OSN synaptic output elevates glomeruli remodeling. We find that GABAergic neurotransmission has no detectable role, but that glutamatergic signaling via NMDA receptors is required for OSN synaptic refinement. Together, these results demonstrate that OSN inputs into the brain manifest robust, experience-dependent remodeling during an early-life critical period, which requires olfactory reception, OSN activity, and NMDA receptor signaling. This work reveals a pathway linking initial olfactory sensory experience to glutamatergic neurotransmission in the activity-dependent remodeling of brain neural circuitry in an early-use critical period.>SIGNIFICANCE STATEMENT Neurodevelopmental disorders manifest symptoms at specific developmental milestones that suggest an intersection between early sensory experience and brain neural circuit remodeling. One classic example is Fragile X syndrome caused by loss of an RNA-binding translation regulator of activity-dependent synaptic refinement. As a model, Drosophila olfactory circuitry is well characterized, genetically tractable, and rapidly developing, and thus ideally suited to probe underlying mechanisms. Here, we find olfactory sensory neurons are dramatically remodeled by heightened sensory experience during an early-life critical period. We demonstrate removing the olfactory stimulus during the critical period can reverse the connectivity changes. We find that this remodeling requires neural activity and NMDA receptor-mediated glutamatergic transmission. This improved understanding may help us design treatments for neurodevelopmental disorders.
机译:当环境对大脑电路有明显影响时,关键时期就是发育的窗口。神经发育障碍的模型,包括自闭症谱系障碍,智力障碍和精神分裂症,与关键时期重塑的中断有关。关键时期始于感官体验的开始;然而,尚不清楚确切的感觉输入如何改变大脑的电路。在这里,我们研究了果蝇触角叶的嗅觉感觉神经元(OSN)神经支配作为该问题的遗传模型。我们发现,嗅觉的感觉体验在早期使用的关键时期会导致OSN神经节的肾小球肾小球丢失和随后的轴突缩回以剂量依赖性机制。这种重塑不是由嗅觉受体丢失或OSN变性引起的,而是由目标嗅球中的快速突触消除和轴突修剪引起的。仅在关键时期去除气味刺激物才能导致OSN重新神经支配,这表明重塑是暂时可逆的。我们发现这种突触细化需要OSN特定嗅觉受体和下游活动。相反,阻断OSN突触输出可提高肾小球重塑。我们发现,GABA能神经传递没有可检测的作用,但OSN突触细化需要通过NMDA受体的谷氨酸能信号传导。总之,这些结果表明OSN输入到大脑在生命的关键时期表现出强大的,依赖经验的重塑,这需要嗅觉接收,OSN活性和NMDA受体信号传导。这项工作揭示了在早期使用的关键时期,嗅觉感觉体验与谷氨酸能神经传递在依赖于依赖的脑神经回路的活动依赖性重塑中的通路。>意义声明神经发育障碍在特定的发展里程碑上表现出症状,这表明早期的感觉体验和大脑神经回路重塑之间的交集。一个经典的例子是脆性X综合征,它是由依赖于活性的突触细化的RNA结合翻译调节子的缺失引起的。作为模型,果蝇嗅觉回路具有良好的特征,遗传易处理且发展迅速,因此非常适合探测潜在的机制。在这里,我们发现嗅觉感觉神经元在生命早期的关键时期被增强的感觉经验极大地重塑了。我们证明了在关键时期消除嗅觉刺激可以逆转连通性变化。我们发现这种重塑需要神经活动和NMDA受体介导的谷氨酸能传递。这种增进的理解可能有助于我们设计神经发育障碍的治疗方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号