首页> 美国卫生研究院文献>The Journal of Neuroscience >Gating of Acoustic Transducer Channels Is Shaped by Biomechanical Filter Processes
【2h】

Gating of Acoustic Transducer Channels Is Shaped by Biomechanical Filter Processes

机译:声换能器通道的门控是通过生物力学过滤过程进行的

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanoelectrical transduction of acoustic signals is the fundamental process for hearing in all ears across the animal kingdom. Here, we performed in vivo laser-vibrometric and electrophysiological measurements at the transduction site in an insect ear (Mecopoda elongata) to relate the biomechanical tonotopy along the hearing organ to the frequency tuning of the corresponding sensory cells. Our mechanical and electrophysiological map revealed a biomechanical filter process that considerably sharpens the neuronal response. We demonstrate that the channel gating, which acts on chordotonal stretch receptor neurons, is based on a mechanical directionality of the sound-induced motion. Further, anatomical studies of the transduction site support our finding of a stimulus-relevant tilt. In conclusion, we were able to show, in an insect ear, that directionality of channel gating considerably sharpens the neuronal frequency selectivity at the peripheral level and have identified a mechanism that enhances frequency discrimination in tonotopically organized ears.>SIGNIFICANCE STATEMENT The evolutionarily conserved ability of sensory cells to sense sound-induced mechanical forces is a fundamental process that still need investigating. In ears, the transduction process of acoustic signals from sound to frequency-specific neuronal responses of sensory cells is based on the opening of mechanosensitive ion channels. Here, we investigated mechanotransduction in the katydid's hearing organ with in vivo measurements of the sound-induced mechanical stimulus and of the electrical responses of the sensory cell at the transduction site. By combining anatomical, biophysical, and neurophysiological data, we present for the first time evidence of a crucial frequency-filter mechanism integral to the channel gating process. This filter takes effect at the first step of the signal transduction chain and shapes behavior-relevant hearing information.
机译:声音信号的机电转换是整个动物界中所有耳朵的听力的基本过程。在这里,我们在昆虫耳(Mecopoda elongata)的转导部位进行了体内激光振动和电生理学测量,以将沿听觉器官的生物力学音调与相应的感觉细胞的频率调节相关联。我们的机械和电生理图显示了生物机械过滤过程,该过程大大增强了神经元反应。我们证明,通道门控,它作用于腱索拉伸受体神经元,是基于声音诱导运动的机械方向性的。此外,转导部位的解剖学研究支持我们发现与刺激有关的倾斜。总之,我们能够在昆虫的耳朵中显示出通道门控的方向性可显着增强外周水平的神经元频率选择性,并确定了一种增强在局部组织的耳朵中进行频率辨别的机制。>意义声明感觉细胞感知声音诱导的机械力的进化上保守的能力是一个尚需研究的基本过程。在耳朵中,声音信号从声音到感觉细胞的频率特定神经元反应的转导过程是基于机械敏感离子通道的打开。在这里,我们通过对体内声音诱导的机械刺激和转导部位感觉细胞电反应的体内测量,研究了katydid听力器官中的机械转导。通过结合解剖,生物物理和神经生理学数据,我们首次展示了通道门控过程必不可少的关键频率滤波器机制的证据。该过滤器在信号转导链的第一步生效,并塑造与行为相关的听力信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号