首页> 美国卫生研究院文献>The Journal of Neuroscience >Nonlinear Dynamics Support a Linear Population Code in a Retinal Target-Tracking Circuit
【2h】

Nonlinear Dynamics Support a Linear Population Code in a Retinal Target-Tracking Circuit

机译:非线性动力学在视网膜目标跟踪电路中支持线性人口代码

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A basic task faced by the visual system of many organisms is to accurately track the position of moving prey. The retina is the first stage in the processing of such stimuli; the nature of the transformation here, from photons to spike trains, constrains not only the ultimate fidelity of the tracking signal but also the ease with which it can be extracted by other brain regions. Here we demonstrate that a population of fast-OFF ganglion cells in the salamander retina, whose dynamics are governed by a nonlinear circuit, serve to compute the future position of the target over hundreds of milliseconds. The extrapolated position of the target is not found by stimulus reconstruction but is instead computed by a weighted sum of ganglion cell outputs, the population vector average (PVA). The magnitude of PVA extrapolation varies systematically with target size, speed, and acceleration, such that large targets are tracked most accurately at high speeds, and small targets at low speeds, just as is seen in the motion of real prey. Tracking precision reaches the resolution of single photoreceptors, and the PVA algorithm performs more robustly than several alternative algorithms. If the salamander brain uses the fast-OFF cell circuit for target extrapolation as we suggest, the circuit dynamics should leave a microstructure on the behavior that may be measured in future experiments. Our analysis highlights the utility of simple computations that, while not globally optimal, are efficiently implemented and have close to optimal performance over a limited but ethologically relevant range of stimuli.
机译:许多生物的视觉系统面临的基本任务是准确跟踪移动猎物的位置。视网膜是处理此类刺激的第一阶段。从光子到尖峰序列的转换本质不仅限制了跟踪信号的最终保真度,还限制了其他大脑区域可以轻松提取该信号。在这里,我们证明了sal视网膜中快速关闭的神经节细胞群,其动力学受非线性电路控制,可用于计算目标在数百毫秒内的未来位置。通过刺激重建无法找到目标的外推位置,而是通过神经节细胞输出的加权总和即种群矢量平均值(PVA)计算得出。 PVA外推的幅度会随着目标大小,速度和加速度而系统地变化,因此,如在真实猎物的运动中所见,大型目标在高速下的追踪最准确,小型目标在低速下的追踪最准确。跟踪精度达到单个感光体的分辨率,并且PVA算法的性能比其他几种算法更强健。如果the脑按照我们的建议使用快速关闭的细胞电路进行目标外推,则电路动力学应该在行为上留下微观结构,可以在以后的实验中进行测量。我们的分析突出了简单计算的效用,尽管它不是全局最优的,但在有限的但与伦理学相关的刺激范围内却能有效实施并接近最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号