首页> 美国卫生研究院文献>The Journal of Neuroscience >Evidence from Computer Simulations for Alterations in the Membrane Biophysical Properties and Dendritic Processing of Synaptic Inputs in Mutant Superoxide Dismutase-1 Motoneurons
【2h】

Evidence from Computer Simulations for Alterations in the Membrane Biophysical Properties and Dendritic Processing of Synaptic Inputs in Mutant Superoxide Dismutase-1 Motoneurons

机译:来自计算机模拟的突变超氧化物歧化酶-1膜突触的膜生物物理性质和突触输入的树突加工变化的证据。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A critical step in improving our understanding of the development of amyotrophic lateral sclerosis (ALS) is to identify the factors contributing to the alterations in the excitability of motoneurons and assess their individual contributions. Here we investigated the early alterations in the passive electrical and morphological properties of neonatal spinal motoneurons that occur by 10 d after birth, long before disease onset. We identified some of the factors contributing to these alterations, and estimated their individual contributions. To achieve this goal, we undertook a computer simulation analysis using realistic morphologies of reconstructed wild-type (WT) and mutant superoxide dismutase-1 (mSOD1) motoneurons. Ion channel parameters of these models were then tuned to match the experimental data on electrical properties obtained from these same motoneurons. We found that the reduced excitability of mSOD1 models was accompanied with decreased specific membrane resistance by ∼25% and efficacy of synaptic inputs (slow and fast) by 12–22%. Linearity of summation of synaptic currents was similar to WT. We also assessed the contribution of the alteration in dendritic morphology alone to this decreased excitability and found that it reduced the input resistance by 10% and the efficacy of synaptic inputs by 7–15%. Our results were also confirmed in models with dendritic active conductances. Our simulations indicated that the alteration in passive electrical properties of mSOD1 models resulted from concurrent alterations in their morphology and membrane biophysical properties, and consequently altered the motoneuronal dendritic processing of synaptic inputs. These results clarify new aspects of spinal motoneurons malfunction in ALS.
机译:增进我们对肌萎缩性侧索硬化症(ALS)发生发展的认识的关键一步是确定促成运动神经元兴奋性改变的因素并评估其个别作用。在这里,我们研究了新生儿脊髓运动神经元的被动电学和形态学特性的早期变化,这些变化发生于出生后10 d,即疾病发作很久之前。我们确定了促成这些变化的一些因素,并估计了它们的个体贡献。为了实现此目标,我们进行了计算机模拟分析,使用的是重建的野生型(WT)和突变型超氧化物歧化酶-1(mSOD1)运动神经元的现实形态。然后调整这些模型的离子通道参数,以匹配从这些相同的运动神经元获得的电性能的实验数据。我们发现,mSOD1模型的兴奋性降低伴有比膜抗性降低约25%,突触输入(慢和快)的功效降低了12-22%。突触电流总和的线性与WT相似。我们还评估了仅树突形态改变对这种降低的兴奋性的贡献,发现它使输入阻力降低了10%,突触输入的功效降低了7-15%。在具有树突状活性电导的模型中也证实了我们的结果。我们的模拟表明,mSOD1模型的被动电特性改变是由于其形态和膜生物物理特性的同时改变而引起的,因此改变了突触输入的动神经元树突加工。这些结果阐明了脊髓运动神经元功能障碍的新方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号