首页> 美国卫生研究院文献>Proceedings of the Royal Society B: Biological Sciences >Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight
【2h】

Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight

机译:不对称羽毛的倒钩几何揭示了鸟类飞行进化中的过渡形态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The geometry of feather barbs (barb length and barb angle) determines feather vane asymmetry and vane rigidity, which are both critical to a feather's aerodynamic performance. Here, we describe the relationship between barb geometry and aerodynamic function across the evolutionary history of asymmetrical flight feathers, from Mesozoic taxa outside of modern avian diversity (Microraptor, Archaeopteryx, Sapeornis, Confuciusornis and the enantiornithine Eopengornis) to an extensive sample of modern birds. Contrary to previous assumptions, we find that barb angle is not related to vane-width asymmetry; instead barb angle varies with vane function, whereas barb length variation determines vane asymmetry. We demonstrate that barb geometry significantly differs among functionally distinct portions of flight feather vanes, and that cutting-edge leading vanes occupy a distinct region of morphospace characterized by small barb angles. This cutting-edge vane morphology is ubiquitous across a phylogenetically and functionally diverse sample of modern birds and Mesozoic stem birds, revealing a fundamental aerodynamic adaptation that has persisted from the Late Jurassic. However, in Mesozoic taxa stemward of Ornithurae and Enantiornithes, trailing vane barb geometry is distinctly different from that of modern birds. In both modern birds and enantiornithines, trailing vanes have larger barb angles than in comparatively stemward taxa like Archaeopteryx, which exhibit small trailing vane barb angles. This discovery reveals a previously unrecognized evolutionary transition in flight feather morphology, which has important implications for the flight capacity of early feathered theropods such as Archaeopteryx and Microraptor. Our findings suggest that the fully modern avian flight feather, and possibly a modern capacity for powered flight, evolved crownward of Confuciusornis, long after the origin of asymmetrical flight feathers, and much later than previously recognized.
机译:羽毛倒钩的几何形状(倒钩长度和倒钩角度)决定了羽毛叶片的不对称性和叶片刚性,这对羽毛的空气动力性能至关重要。在这里,我们描述了不对称飞行羽毛的进化史上的倒钩几何形状与空气动力学功能之间的关系,从现代鸟类多样性之外的中生代分类群(Microraptor,始祖鸟,Sapeornis,Confuciusornis和对映鸟氨酸Eopengornis)到大量现代鸟类样本。与先前的假设相反,我们发现倒钩角与叶片宽度不对称性无关;相反,倒钩角度随叶片功能而变化,而倒钩长度的变化决定叶片的不对称性。我们证明倒钩的几何形状在飞行羽毛叶片的功能不同部分之间显着不同,并且尖端的前导叶片占据了以小倒钩角度为特征的形态空间的不同区域。这种尖端的叶片形态在现代鸟类和中生代鸟类的系统发育和功能多样的样本中无处不在,揭示了侏罗纪晚期一直存在的基本的空气动力学适应性。然而,在中生代的Ornithurae和Enantiornithes的分类群中,尾叶倒钩的几何形状与现代鸟类的几何形状明显不同。在现代鸟类和对映鸟氨酸中,后尾叶片的倒钩角都比诸如始祖鸟等相对茎向的类群中的倒钩角大,后者的尾翼倒钩角较小。这一发现揭示了飞行羽毛形态学以前无法识别的进化转变,这对早期羽毛化兽脚类(如始祖鸟和微型猛禽)的飞行能力具有重要意义。我们的研究结果表明,完全现代的鸟类飞行羽毛,以及可能具有现代动力的飞行能力,是在不对称飞行羽毛起源很久之后才逐渐发展成孔子的,而且比以前认识的要晚得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号