首页> 美国卫生研究院文献>The Journal of Neuroscience >Contrasting Patterns of Receptive Field Plasticity in the Hippocampus and the Entorhinal Cortex: An Adaptive Filtering Approach
【2h】

Contrasting Patterns of Receptive Field Plasticity in the Hippocampus and the Entorhinal Cortex: An Adaptive Filtering Approach

机译:海马和内嗅皮层感受野可塑性的对比模式:自适应滤波方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neural receptive fields are frequently plastic: a neural response to a stimulus can change over time as a result of experience. We developed an adaptive point process filtering algorithm that allowed us to estimate the dynamics of both the spatial receptive field (spatial intensity function) and the interspike interval structure (temporal intensity function) of neural spike trains on a millisecond time scale without binning over time or space. We applied this algorithm to both simulated data and recordings of putative excitatory neurons from the CA1 region of the hippocampus and the deep layers of the entorhinal cortex (EC) of awake, behaving rats. Our simulation results demonstrate that the algorithm accurately tracks simultaneous changes in the spatial and temporal structure of the spike train. When we applied the algorithm to experimental data, we found consistent patterns of plasticity in the spatial and temporal intensity functions of both CA1 and deep EC neurons. These patterns tended to be opposite in sign, in that the spatial intensity functions of CA1 neurons showed a consistent increase over time, whereas those of deep EC neurons tended to decrease, and the temporal intensity functions of CA1 neurons showed a consistent increase only in the “theta” (75–150 msec) region, whereas those of deep EC neurons decreased in the region between 20 and 75 msec. In addition, the minority of deep EC neurons whose spatial intensity functions increased in area over time fired in a significantly more spatially specific manner than non-increasing deep EC neurons. We hypothesize that this subset of deep EC neurons may receive more direct input from CA1 and may be part of a neural circuit that transmits information about the animal's location to the neocortex.
机译:神经感受器通常是可塑性的:经验的结果是,随着时间的流逝,对刺激的神经反应也会发生变化。我们开发了一种自适应的点过程过滤算法,该算法使我们能够在毫秒级的时间内估计神经尖峰序列的空间感受野(空间强度函数)和尖峰间隔结构(时间强度函数)的动态,而不会随着时间或空间。我们将此算法应用于模拟数据和海马CA1区以及行为清醒的大鼠内嗅皮质(EC)深层的假定兴奋性神经元的记录。我们的仿真结果表明,该算法可以准确地跟踪峰值序列的时空结构的同时变化。当我们将该算法应用于实验数据时,我们在CA1和深层EC神经元的时空强度函数中发现了一致的可塑性模式。这些模式在符号上趋于相反,因为CA1神经元的空间强度功能随时间推移呈一致的增加,而深层EC神经元的空间强度功能趋于减小,而CA1神经元的时间强度函数仅随时间呈一致增长。 “θ”(75-150毫秒)区域,而深层EC神经元的区域在20到75毫秒之间减小。此外,与不增加的深层EC神经元相比,少数空间强度功能随时间增加的深层EC神经元的发射具有明显的空间特异性。我们假设深层EC神经元的这个子集可能会从CA1接收更多直接输入,并且可能是将有关动物位置的信息传输到新皮质的神经回路的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号