首页> 美国卫生研究院文献>Beilstein Journal of Nanotechnology >Perfusion double-channel micropipette probes for oxygen flux mapping with single-cell resolution
【2h】

Perfusion double-channel micropipette probes for oxygen flux mapping with single-cell resolution

机译:灌注双通道微量移液器探针用于单细胞分辨率的氧气通量测绘

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Measuring cellular respiration with single-cell spatial resolution is a significant challenge, even with modern tools and techniques. Here, a double-channel micropipette is proposed and investigated as a probe to achieve this goal by sampling fluid near the point of interest. A finite element model (FEM) of this perfusion probe is validated by comparing simulation results with experimental results of hydrodynamically confined fluorescent molecule diffusion. The FEM is then used to investigate the dependence of the oxygen concentration variation and the measurement signal on system parameters, including the pipette’s shape, perfusion velocity, position of the oxygen sensors within the pipette, and proximity of the pipette to the substrate. The work demonstrates that the use of perfusion double-barrel micropipette probes enables the detection of oxygen consumption signals with micrometer spatial resolution, while amplifying the signal, as compared to sensors without the perfusion system. In certain flow velocity ranges (depending on pipette geometry and configuration), the perfusion flow increases oxygen concentration gradients formed due to cellular oxygen consumption. An optimal perfusion velocity for respiratory measurements on single cells can be determined for different system parameters (e.g., proximity of the pipette to the substrate). The optimum perfusion velocities calculated in this paper range from 1.9 to 12.5 μm/s. Finally, the FEM model is used to show that the spatial resolution of the probe may be varied by adjusting the pipette tip diameter, which may allow oxygen consumption mapping of cells within tissue, as well as individual cells at subcellular resolution.
机译:即使使用现代工具和技术,以单细胞空间分辨率测量细胞呼吸也是一项重大挑战。在这里,提出了一种双通道微量移液器,并进行了研究,以作为通过在感兴趣点附近采样流体来实现此目标的探针。通过将模拟结果与流体动力学限制的荧光分子扩散的实验结果进行比较,验证了该灌注探针的有限元模型(FEM)。然后使用FEM研究氧气浓度变化和测量信号对系统参数的依赖性,这些参数包括移液管的形状,灌注速度,移液管内氧气传感器的位置以及移液管与底物的接近程度。这项工作表明,与不使用灌注系统的传感器相比,使用灌注双管微量移液器探头能够以微米级的空间分辨率检测耗氧信号,同时放大信号。在某些流速范围内(取决于移液器的几何形状和配置),灌注流量会增加由于细胞耗氧而形成的氧气浓度梯度。可以针对不同的系统参数(例如,移液管与底物的接近度)确定用于单细胞呼吸测量的最佳灌注速度。本文计算的最佳灌注速度范围为1.9至12.5μm/ s。最后,FEM模型用于显示可以通过调节移液器尖端直径来改变探针的空间分辨率,这可以允许绘制组织内细胞以及亚细胞分辨率下单个细胞的耗氧图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号