首页> 美国卫生研究院文献>Beilstein Journal of Organic Chemistry >Molecular-level architectural design using benzothiadiazole-based polymers for photovoltaic applications
【2h】

Molecular-level architectural design using benzothiadiazole-based polymers for photovoltaic applications

机译:使用基于苯并噻二唑的聚合物进行光伏应用的分子级建筑设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A series of low band gap, planar conjugated polymers, >P1 (PFDTBT), >P2 (PFDTDFBT) and >P3 (PFDTTBT), based on fluorene and benzothiadiazole, was synthesized. The effect of fluorine substitution and fused aromatic spacers on the optoelectronic and photovoltaic performance was studied. The polymer, derived from dithienylated benzothiodiazole and fluorene, >P1, exhibited a highest occupied molecular orbital (HOMO) energy level at −5.48 eV. Density functional theory (DFT) studies as well as experimental measurements suggested that upon substitution of the acceptor with fluorine, both the HOMO and lowest unoccupied molecular orbital (LUMO) energy levels of the resulting polymer, >P2, were lowered, leading to a higher open circuit voltage and short circuit current with an overall improvement of more than 110% for the photovoltaic devices. Moreover, a decrease in the torsion angle between the units was also observed for the fluorinated polymer >P2 due to the enhanced electrostatic interaction between the fluorine substituents and sulfur atoms, leading to a high hole mobility. The use of a fused π-bridge in polymer >P3 for the enhancement of the planarity as compared to the >P1 backbone was also studied. This enhanced planarity led to the highest observed mobility among the reported three polymers as well as to an improvement in the device efficiency by more than 40% for >P3.
机译:基于芴的一系列低带隙平面共轭聚合物> P1 (PFDTBT),> P2 (PFDTDFBT)和> P3 (PFDTTBT),基于芴并合成了苯并噻二唑。研究了氟取代和稠合的芳香族间隔基对光电和光伏性能的影响。衍生自二噻吩基化苯并噻二唑和芴的聚合物> P1 在-5.48 eV处显示出最高的占据分子轨道(HOMO)能级。密度泛函理论(DFT)的研究以及实验测量表明,用氟取代受体后,所得聚合物> P2 的HOMO和最低未占据分子轨道(LUMO)能级均为降低电压,导致更高的开路电压和短路电流,而光伏器件的总体改进超过110%。此外,由于氟取代基和硫原子之间的静电相互作用增强,导致氟化聚合物> P2 单元之间的扭转角减小,从而导致高空穴迁移率。还研究了在聚合物> P3 中使用熔融π桥与> P1 主链相比提高平面度的方法。这种增强的平面性导致报告的三种聚合物中观察到的迁移率最高,并且> P3 的器件效率提高了40%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号