首页> 美国卫生研究院文献>Biomedical Optics Express >Small separation frequency-domain near-infrared spectroscopy for the recovery of tissue optical properties at millimeter depths
【2h】

Small separation frequency-domain near-infrared spectroscopy for the recovery of tissue optical properties at millimeter depths

机译:小型分离频域近红外光谱仪用于在毫米深度处恢复组织光学特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Millimeter-depth sensitivity with frequency domain near-infrared spectroscopy has been challenging due to the breakdown of the diffusion equation for source-detection separations < 1cm. To overcome this challenge, we employ a Monte-Carlo lookup table-based inverse algorithm to fit small separation (3-6 mm) frequency-domain near-infrared spectroscopy (FDNIRS) data for absorption and reduced scattering coefficients. We verify this small separation FDNIRS method through a series of in vitro and in vivo studies. In vitro, we observed a root mean squared percent error (RMSE) in estimation of the reduced scattering coefficient and absorption coefficient of 2.8% and 7.6%, respectively, in liquid phantoms consisting of Intralipid and Indian ink, and a RMSE in estimation of oxygen saturation and total hemoglobin concentrations of 7.8 and 11.2%, respectively, in blood-mixed liquid phantoms. Next, we demonstrate one particularly valuable in vivo application of this technique wherein we non-invasively measure the optical properties of the mouse brain (n = 4). We find that the measured resting state cerebral oxygen saturation and hemoglobin concentration are consistent with literature reported values, and we observe expected trends during a hyper-/hypoxia challenge that qualitatively mimic changes in partial pressure of oxygen (pO2) measured simultaneously with an invasive pO2 sensor. Further, through simulations of the mouse head geometry, we demonstrate that the skull and scalp exert minimal influence on the estimate oxygen saturation, while leading to small but systematic underestimation of total hemoglobin concentration. In total, these results demonstrate the robustness of small separation FDNIRS to assess tissue optical properties at millimeter depth resolution.
机译:频域近红外光谱法的毫米深度灵敏度一直是挑战性的,这是因为源探测间隔小于1cm的扩散方程式的分解。为了克服这一挑战,我们采用基于蒙特卡洛查找表的逆算法来拟合小间距(3-6 mm)的频域近红外光谱(FDNIRS)数据,以吸收并降低散射系数。我们通过一系列的体外和体内研究验证了这种小分离FDNIRS方法。在体外,我们观察到了均方根误差的均方根(RMSE),用于估计由Intralipid和印度墨水组成的液体体模的降低的散射系数和吸收系数,分别为2.8%和7.6%,而RMSE用于估计氧气血液混合体模中的饱和度和总血红蛋白浓度分别为7.8和11.2%。接下来,我们证明了该技术的一种特别有价值的体内应用,其中我们无创地测量了小鼠大脑的光学特性(n = 4)。我们发现测得的静息状态下脑血氧饱和度和血红蛋白浓度与文献报道的值一致,并且我们观察到高/低氧挑战期间的预期趋势,该趋势定性地模拟了与侵入性pO2同时测量的氧气分压(pO2)的变化传感器。此外,通过对小鼠头部几何形状的模拟,我们证明头骨和头皮对估计的氧饱和度影响最小,同时导致总血红蛋白浓度小而系统地低估。总而言之,这些结果证明了小间距FDNIRS在毫米深度分辨率下评估组织光学特性的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号