首页> 美国卫生研究院文献>Biomedical Optics Express >Doppler OCT clutter rejection using variance minimization and offset extrapolation
【2h】

Doppler OCT clutter rejection using variance minimization and offset extrapolation

机译:使用方差最小化和偏移外推的多普勒OCT杂波抑制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Doppler optical coherence tomography (OCT) is widely used for high-resolution mapping of flow velocities and is based on analysis of temporal changes in the phase of an OCT signal (i.e., how fast the OCT signal rotates in the complex plane). Determination of the rate of phase change or rotation speed critically depends on the center of rotation. Here, we demonstrate the bias in high-pass filtering, the current widely used method to determine the center of rotation, and propose two advanced methods for Doppler OCT clutter rejection. The bias in the high-pass filtering method becomes increasingly significant with lower velocities or larger signal noise. Two novel methods based on variance minimization and offset extrapolation can potentially reduce this bias and thereby improve the accuracy of Doppler OCT measurements of flow velocities, even for low-velocity and/or high-noise signals. The two novel methods and the current standard method (high-pass filtering) have been tested in combination with several currently used velocity measurement algorithms: Kasai, autocorrelation function fitting, and maximum likelihood estimation. The newly proposed methods are shown to improve the accuracy in both the center of rotation and resultant velocity by up to 60 percentage points and reduce the flow conservation error by 30% when applied to in vivo cerebral blood flow imaging of the rodent brain cortex.
机译:多普勒光学相干断层扫描(OCT)被广泛用于流速的高分辨率映射,并且基于对OCT信号相位的时间变化(即OCT信号在复平面中旋转的速度)的分析。相变速率或旋转速度的确定主要取决于旋转中心。在这里,我们演示了高通滤波中的偏差(当前广泛用于确定旋转中心的方法),并提出了两种先进的多普勒OCT杂波抑制方法。随着速度降低或信号噪声增大,高通滤波方法中的偏置变得越来越明显。两种基于方差最小化和偏移外推的新颖方法可以潜在地减小这种偏差,从而提高流速的多普勒OCT测量精度,即使对于低速和/或高噪声信号也是如此。结合两种当前使用的速度测量算法,对这两种新颖的方法和当前的标准方法(高通滤波)进行了测试:Kasai,自相关函数拟合和最大似然估计。当应用于啮齿动物大脑皮层的体内脑血流成像时,新提出的方法可将旋转中心和合成速度的精度提高多达60个百分点,并将流量守恒误差降低30%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号