首页> 美国卫生研究院文献>Biomicrofluidics >Nanoslit design for ion conductivity gradient enhanced dielectrophoresis for ultrafast biomarker enrichment in physiological media
【2h】

Nanoslit design for ion conductivity gradient enhanced dielectrophoresis for ultrafast biomarker enrichment in physiological media

机译:用于离子电导率梯度增强介电电泳的纳米缝设计可在生理介质中超快速富集生物标记

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Selective and rapid enrichment of biomolecules is of great interest for biomarker discovery, protein crystallization, and in biosensing for speeding assay kinetics and reducing signal interferences. The current state of the art is based on DC electrokinetics, wherein localized ion depletion at the microchannel to nanochannel interface is used to enhance electric fields, and the resulting biomarker electromigration is balanced against electro-osmosis in the microchannel to cause high degrees of biomarker enrichment. However, biomarker enrichment is not selective, and the levels fall off within physiological media of high conductivity, due to a reduction in ion concentration polarization and electro-osmosis effects. Herein, we present a methodology for coupling AC electrokinetics with ion concentration polarization effects in nanoslits under DC fields, for enabling ultrafast biomarker enrichment in physiological media. Using AC fields at the critical frequency necessary for negative dielectrophoresis of the biomarker of interest, along with a critical offset DC field to create proximal ion accumulation and depletion regions along the perm-selective region inside a nanoslit, we enhance the localized field and field gradient to enable biomarker enrichment over a wide spatial extent along the nanoslit length. While enrichment under DC electrokinetics relies solely on ion depletion to enhance fields, this AC electrokinetic mechanism utilizes ion depletion as well as ion accumulation regions to enhance the field and its gradient. Hence, biomarker enrichment continues to be substantial in spite of the steady drop in nanostructure perm-selectivity within physiological media.
机译:选择性和快速富集生物分子对于生物标记物发现,蛋白质结晶以及在生物传感中加速测定动力学和减少信号干扰非常感兴趣。当前的现有技术基于DC电动学,其中在微通道至纳米通道界面处的局部离子消耗用于增强电场,并且所产生的生物标记物电迁移与微通道中的电渗透平衡,从而引起高度的生物标记物富集。 。然而,由于离子浓度极化和电渗效应的降低,生物标志物的富集不是选择性的,并且其水平在高电导率的生理介质中下降。在这里,我们提出了一种在直流电场下将纳米级缝隙中的交流电动力学与离子浓度极化效应耦合在一起的方法,以实现生理介质中超快生物标记的富集。使用感兴趣的生物标志物负介电电泳所需的临界频率下的交流电场,以及临界偏移直流电场,沿着纳米缝隙内的渗透选择性区域创建近端离子积累和耗尽区域,我们增强了局部电场和电场梯度以使生物标志物在纳米缝隙长度上的广泛空间范围内富集。尽管在直流电动力学下进行富集仅依靠离子耗竭来增强电场,但这种交流电动电机制则利用离子耗竭以及离子积累区域来增强电场及其梯度。因此,尽管在生理介质内纳米结构的渗透选择性持续下降,生物标志物的富集仍然是重要的。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号