首页> 美国卫生研究院文献>Biomicrofluidics >Microfluidic platform for the study of intercellular communication viasoluble factor-cell and cell-cell paracrine signaling
【2h】

Microfluidic platform for the study of intercellular communication viasoluble factor-cell and cell-cell paracrine signaling

机译:用于研究细胞间通讯的微流体平台可溶性因子细胞和细胞旁分泌信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Diffusion of autocrine and paracrine signaling molecules allows cells to communicate in the absence of physical contact. This chemical-based, long-range communication serves crucial roles in tissue function, activation of the immune system, and other physiological functions. Despite its importance, few in vitro methods to study cell-cell signaling through paracrine factors are available today. Here, we report the design and validation of a microfluidic platform that enables (i) soluble molecule-cell and/or (ii) cell-cell paracrine signaling. In the microfluidic platform, multiple cell populations can be introduced into parallel channels. The channels are separated by arrays of posts allowing diffusion of paracrine molecules between cell populations. A computational analysis was performed to aid design of the microfluidic platform. Specifically, it revealed that channel spacing affects both spatial and temporal distribution of signaling molecules, while the initial concentration of the signaling molecule mainly affects the concentration of the signaling molecules excreted by the cells. To validate the microfluidic platform, a model system composed of the signaling molecule lipopolysaccharide, mouse macrophages, and engineered human embryonic kidneycells was introduced into the platform. Upon diffusion from the firstchannel to the second channel, lipopolysaccharide activates the macrophages which begin toproduce TNF-α. The TNF-α diffuses from the second channel to the third channel tostimulate the kidneycells, which express green fluorescent protein (GFP) in response. Byincreasing the initial lipopolysaccharide concentration an increase in fluorescentresponse was recorded, demonstrating the ability to quantify intercellular communicationbetween 3D cellular constructs using the microfluidic platform reportedhere. Overall, these studies provide a detailed analysis on how concentration of theinitial signaling molecules, spatiotemporal dynamics, and inter-channel spacing affectintercellularcommunication.
机译:自分泌和旁分泌信号分子的扩散允许细胞在没有物理接触的情况下进行通讯。这种基于化学物质的远程通讯在组织功能,免疫系统激活和其他生理功能中起着至关重要的作用。尽管它很重要,但是今天很少有体外方法研究通过旁分泌因子引起的细胞信号传导。在这里,我们报告了微流体平台的设计和验证,该平台能够(i)可溶性分子-细胞和/或(ii)细胞-细胞旁分泌信号传导。在微流体平台中,可以将多个细胞群引入平行通道。通道由柱阵列隔开,从而使旁分泌分子在细胞群之间扩散。进行了计算分析以帮助微流体平台的设计。具体而言,它揭示了通道间隔影响信号分子的空间和时间分布,而信号分子的初始浓度主要影响细胞分泌的信号分子的浓度。为了验证微流体平台,该模型系统由信号分子脂多糖,小鼠巨噬细胞和工程化的人类胚胎肾脏组成单元被引入平台。从第一个扩散通道到第二通道,脂多糖激活巨噬细胞产生TNF-α。 TNF-α从第二通道扩散到第三通道刺激肾脏细胞表达绿色荧光蛋白(GFP)作为响应。通过增加初始脂多糖浓度,增加荧光记录了反应,证明了量化细胞间通讯的能力使用微流体平台的3D细胞构建体之间的报道这里。总体而言,这些研究提供了有关初始信号分子,时空动力学和通道间间隔影响细胞间通讯。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号