首页> 美国卫生研究院文献>Biophysical Journal >Label-free Imaging and Bending Analysis of Microtubules by ROCS Microscopy and Optical Trapping
【2h】

Label-free Imaging and Bending Analysis of Microtubules by ROCS Microscopy and Optical Trapping

机译:ROCS显微镜和光学陷印技术对微管进行无标记成像和弯曲分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanical manipulation of single cytoskeleton filaments and their monitoring over long times is difficult because of fluorescence bleaching or phototoxic protein degradation. The integration of label-free microscopy techniques, capable of imaging freely diffusing, weak scatterers such as microtubules (MTs) in real-time, and independent of their orientation, with optical trapping and tracking systems, would allow many new applications. Here, we show that rotating-coherent-scattering microscopy (ROCS) in dark-field mode can also provide strong contrast for structures far from the coverslip such as arrangements of isolated MTs and networks. We could acquire thousands of images over up to 30 min without loss in image contrast or visible photodamage. We further demonstrate the combination of ROCS imaging with fast and nanometer-precise 3D interferometric back-focal-plane tracking of multiple beads in time-shared optical traps using acoustooptic deflectors to specifically construct and microrheologically probe small microtubule networks with well-defined geometries. Thereby, we explore the frequency-dependent elastic response of single microtubule filaments between 0.5 Hz and 5 kHz, which allows for investigating their viscoelastic response up to the fourth-order bending mode. Our spectral analysis reveals constant filament stiffness at low frequencies and frequency-dependent stiffening following a power law ∼ωp with a length-dependent exponent p(L). We find further evidence for the dependence of the MT persistence length on the contour length L, which is still controversially debated. We could also demonstrate slower stiffening at high frequencies for longer filaments, which we believe is determined by the molecular architecture of the MT. Our results shed new light on the nanomechanics of this essential, multifunctional cytoskeletal element and pose new questions about the adaptability of the cytoskeleton.
机译:由于荧光漂白或光毒性蛋白质降解,难以对单个细胞骨架细丝进行机械操作并对其进行长时间监控。无标记显微镜技术与光学捕获和跟踪系统的集成,能够实时对自由扩散的弱散射体(如微管(MTs))进行实时成像,并且不受其方向的影响,将允许许多新应用。在这里,我们表明,暗场模式下的旋转相干散射显微镜(ROCS)也可以为远离盖玻片的结构(例如孤立的MT和网络的排列)提供强烈的对比度。我们可以在长达30分钟的时间内获取数千张图像,而不会损失图像对比度或可见光损坏。我们进一步展示了ROCS成像与使用声光偏转器在分时光阱中对多个微珠进行快速精确的纳米级3D干涉反焦平面跟踪相结合的ROCS成像技术,可专门构建和微流变探测具有明确定义的几何形状的小型微管网络。因此,我们探究了单个微管细丝在0.5Hz至5kHz之间的频率相关的弹性响应,从而可以研究其粘弹性响应直至四阶弯曲模式。我们的频谱分析表明,低频时灯丝的刚度恒定,并且遵循幂定律ω p ,其长度依赖指数为p(L),并随频率而变。我们发现关于MT持续长度与轮廓长度L的相关性的进一步证据,这仍存在争议。我们还可以证明较长的长丝在高频下的硬化速度较慢,我们认为这是由MT的分子结构决定的。我们的研究结果为这种基本的多功能细胞骨架元件的纳米力学提供了新的思路,并提出了有关细胞骨架适应性的新问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号