首页> 美国卫生研究院文献>Biophysical Journal >Microtubule Dynamics Kinesin-1 Sliding and Dynein Action Drive Growth of Cell Processes
【2h】

Microtubule Dynamics Kinesin-1 Sliding and Dynein Action Drive Growth of Cell Processes

机译:微管动力学Kinesin-1滑动和Dynein作用驱动细胞过程的生长

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent experimental studies of the role of microtubule sliding in neurite outgrowth suggested a qualitative model, according to which kinesin-1 motors push the minus-end-out microtubules against the cell membrane and generate the early cell processes. At the later stage, dynein takes over the sliding, expels the minus-end-out microtubules from the neurites, and pulls in the plus-end-out microtubules that continue to elongate the nascent axon. This model leaves unanswered a number of questions: why is dynein unable to generate the processes alone, whereas kinesin-1 can? What is the role of microtubule dynamics in process initiation and growth? Can the model correctly predict the rates of process growth in control and dynein-inhibited cases? What triggers the transition from kinesin-driven to dynein-driven sliding? To answer these questions, we combine computational modeling of a network of elastic dynamic microtubules and kinesin-1 and dynein motors with measurements of the process growth kinetics and pharmacological perturbations in Drosophila S2 cells. The results verify quantitatively the qualitative model of the microtubule polarity sorting and suggest that dynein-powered elongation is effective only when the processes are longer than a threshold length, which explains why kinesin-1 alone, but not dynein, is sufficient for the process growth. Furthermore, we show that the mechanism of process elongation depends critically on microtubule dynamic instability. Both modeling and experimental measurements show, surprisingly, that dynein inhibition accelerates the process extension. We discuss implications of the model for the general problems of cell polarization, cytoskeletal polarity emergence, and cell process protrusion.
机译:最近关于微管在神经突生长中的作用的实验研究提出了一个定性模型,根据该模型,驱动蛋白1马达将负端微管推向细胞膜并产生早期细胞过程。在随后的阶段,动力蛋白接管滑行,从神经突中排出负端微管,然后拉出正端微管,继续延长新生的轴突。该模型未解决许多问题:为什么动力蛋白不能单独产生过程,而动力蛋白1却可以?微管动力学在过程启动和生长中的作用是什么?该模型能否正确预测对照和动力蛋白抑制病例的过程生长速率?是什么触发了从驱动蛋白驱动的向动力蛋白驱动的滑动的过渡?为了回答这些问题,我们将果蝇S2细胞中弹性动态微管与kinesin-1和dynein电机网络的计算模型与过程生长动力学和药理扰动的测量值相结合。结果定量验证了微管极性分选的定性模型,并表明只有当过程长于阈值长度时,才能用动力达因伸长率才有效,这解释了为什么单独使用kinesin-1(而不是动力因)足以进行过程生长。此外,我们表明过程延长的机制主要取决于微管动态不稳定性。令人惊讶的是,建模和实验测量均表明,动力蛋白的抑制作用加速了过程的扩展。我们讨论该模型对细胞极化,细胞骨架极性出现和细胞过程突起的一般问题的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号