首页> 美国卫生研究院文献>Biophysical Journal >The Detection of Nanoscale Membrane Bending with Polarized Localization Microscopy
【2h】

The Detection of Nanoscale Membrane Bending with Polarized Localization Microscopy

机译:偏振定位显微镜在纳米膜弯曲检测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The curvature of biological membranes at the nanometer scale is critically important for vesicle trafficking, organelle morphology, and disease propagation. The initiation of membrane bending occurs at a length scale that is irresolvable by most superresolution optical microscopy methods. Here, we report the development of polarized localization microscopy (PLM), a pointillist optical imaging technique for the detection of nanoscale membrane curvature in correlation with single-molecule dynamics and molecular sorting. PLM combines polarized total internal reflection fluorescence microscopy and single-molecule localization microscopy to reveal membrane orientation with subdiffraction-limited resolution without reducing localization precision by point spread function manipulation. Membrane curvature detection with PLM requires fewer localization events to detect curvature than three-dimensional single-molecule localization microscopy (e.g., photoactivated localization microscopy or stochastic optical reconstruction microscopy), which enables curvature detection 10× faster via PLM. With rotationally confined lipophilic fluorophores and the polarized incident fluorescence excitation, membrane-bending events are revealed with superresolution. Engineered hemispherical membrane curvature with a radius ≥24 nm was detected with PLM, and individual fluorophore localization precision was 13 ± 5 nm. Further, deciphering molecular mobility as a function of membrane topology was enabled. The diffusion coefficient of individual DiI molecules was 25 ± 5× higher in planar supported lipid bilayers than within nanoscale membrane curvature. Through the theoretical foundation and experimental demonstration provided here, PLM is poised to become a powerful technique for revealing the underlying biophysical mechanisms of membrane bending at physiological length scales.
机译:纳米尺度的生物膜曲率对于囊泡运输,细胞器形态和疾病传播至关重要。膜弯曲的开始发生在大多数超分辨率光学显微镜方法无法解决的长度范围内。在这里,我们报告了偏光定位显微镜(PLM)的发展,这是一种点画法光学成像技术,用于检测与单分子动力学和分子分选相关的纳米级膜曲率。 PLM结合了偏振全内反射荧光显微镜和单分子定位显微镜,以亚衍射极限分辨率显示膜取向,而不会通过点扩散功能操纵降低定位精度。与三维单分子定位显微镜(例如光激活定位显微镜或随机光学重建显微镜)相比,使用PLM进行膜曲率检测所需的定位事件更少,从而可以通过PLM将曲率检测速度提高10倍。旋转受限的亲脂性荧光团和偏振入射荧光激发,以超分辨率显示膜弯曲事件。使用PLM检测到半径≥24nm的工程半球膜曲率,单个荧光团的定位精度为13±5 nm。进一步地,能够解释分子迁移率与膜拓扑的关系。在平面支撑的脂质双层中,各个DiI分子的扩散系数比在纳米膜曲率范围内的扩散系数高25±5倍。通过此处提供的理论基础和实验论证,PLM有望成为揭示生理长度尺度下膜弯曲的潜在生物物理机制的强大技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号