首页> 美国卫生研究院文献>Biophysical Journal >Its Preferential Interactions with Biopolymers Account for Diverse Observed Effects of Trehalose
【2h】

Its Preferential Interactions with Biopolymers Account for Diverse Observed Effects of Trehalose

机译:它与生物聚合物的优先相互作用解释了海藻糖的多种观察效果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biopolymer homeostasis underlies the health of organisms, and protective osmolytes have emerged as one strategy used by Nature to preserve biopolymer homeostasis. However, a great deal remains unknown about the mechanism of action of osmolytes. Trehalose, as a prominent example, stabilizes proteins against denaturation by extreme temperature and denaturants, preserves membrane integrity upon freezing or in dry conditions, inhibits polyQ-mediated protein aggregation, and suppresses the aggregation of denatured proteins. The underlying thermodynamic mechanisms of such diverse effects of trehalose remain unclear or controversial. In this study, we applied the surface-additive method developed in the Record laboratory to attack this issue. We characterized the key features of trehalose-biopolymer preferential interactions and found that trehalose has strong unfavorable interactions with aliphatic carbon and significant favorable interactions with amide/anionic oxygen. This dissection has allowed us to elucidate the diverse effects of trehalose and to identify the crucial functional group(s) responsible for its effects. With (semi)quantitative thermodynamic analysis, we discovered that 1) the unfavorable interaction of trehalose with hydrophobic surfaces is the dominant factor in its effect on protein stability, 2) the favorable interaction of trehalose with polar amides enables it to inhibit polyQ-mediated protein aggregation and the aggregation of denatured protein in general, and 3) the favorable interaction of trehalose with phosphate oxygens, together with its unfavorable interaction with aliphatic carbons, enables trehalose to preserve membrane integrity in aqueous solution. These results provide a basis for a full understanding of the role of trehalose in biopolymer homeostasis and the reason behind its evolutionary selection as an osmolyte, as well as for a better application of trehalose as a chemical chaperone.
机译:生物聚合物稳态是生物体健康的基础,而保护性渗透物已成为自然界保存生物聚合物稳态的一种策略。但是,关于渗透压的作用机理尚不清楚。作为一个突出的例子,海藻糖可稳定蛋白质抵抗极端温度和变性剂引起的变性,在冷冻或干燥条件下可保持膜完整性,抑制polyQ介导的蛋白质聚集,并抑制变性蛋白质的聚集。海藻糖这种不同作用的潜在热力学机理仍不清楚或有争议。在这项研究中,我们应用了唱片实验室开发的表面添加方法来解决此问题。我们表征了海藻糖-生物聚合物优先相互作用的关键特征,并发现海藻糖与脂肪族碳有很强的不利相互作用,与酰胺/阴离子氧有显着的有利相互作用。这种解剖使我们能够阐明海藻糖的各种作用,并确定引起其作用的关键功能组。通过(半)定量热力学分析,我们发现:1)海藻糖与疏水表面的不利相互作用是影响蛋白质稳定性的主要因素; 2)海藻糖与极性酰胺的良好相互作用使其能够抑制polyQ介导的蛋白质通常,蛋白质的聚集和变性蛋白质的聚集,以及3)海藻糖与磷酸氧的有利相互作用,以及其与脂肪族碳的不利相互作用,使海藻糖能够保持水溶液中的膜完整性。这些结果为充分了解海藻糖在生物聚合物稳态中的作用以及其作为渗透压剂的进化选择背后的原因,以及更好地将海藻糖用作化学分子伴侣提供了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号