首页> 美国卫生研究院文献>Biophysical Journal >Maxwell’s Mixing Equation Revisited: Characteristic Impedance Equations for Ellipsoidal Cells
【2h】

Maxwell’s Mixing Equation Revisited: Characteristic Impedance Equations for Ellipsoidal Cells

机译:重温麦克斯韦的混合方程式:椭圆形电池的特征阻抗方程式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We derived a series of, to our knowledge, new analytic expressions for the characteristic features of the impedance spectra of suspensions of homogeneous and single-shell spherical, spheroidal, and ellipsoidal objects, e.g., biological cells of the general ellipsoidal shape. In the derivation, we combined the Maxwell-Wagner mixing equation with our expression for the Clausius-Mossotti factor that had been originally derived to describe AC-electrokinetic effects such as dielectrophoresis, electrorotation, and electroorientation. The influential radius model was employed because it allows for a separation of the geometric and electric problems. For shelled objects, a special axial longitudinal element approach leads to a resistor-capacitor model, which can be used to simplify the mixing equation. Characteristic equations were derived for the plateau levels, peak heights, and characteristic frequencies of the impedance as well as the complex specific conductivities and permittivities of suspensions of axially and randomly oriented homogeneous and single-shell ellipsoidal objects. For membrane-covered spherical objects, most of the limiting cases are identical to—or improved with respect to—the known solutions given by researchers in the field. The characteristic equations were found to be quite precise (largest deviations typically <5% with respect to the full model) when tested with parameters relevant to biological cells. They can be used for the differentiation of orientation and the electric properties of cell suspensions or in the analysis of single cells in microfluidic systems.
机译:就我们所知,我们得出了一系列新的解析表达式,用于表示均质和单壳球形,椭球形和椭圆形物体(例如,一般呈椭圆形的生物细胞)的悬浮液的阻抗谱的特征。在推导中,我们将Maxwell-Wagner混合方程式与克劳修斯-莫索蒂因子的表达式结合在一起,该表达式最初被用来描述交流电动力学效应,例如介电电泳,电旋转和电取向。使用影响半径模型是因为它可以将几何问题和电气问题分开。对于带壳物体,使用特殊的轴向纵向单元方法可生成电阻器-电容器模型,该模型可用于简化混合方程式。推导了阻抗水平的平稳水平,峰值高度和特征频率,以及轴向和随机取向的均质和单壳椭球形物体的悬浮液的复比电导率和介电常数的特征方程。对于覆盖有膜的球形物体,大多数局限情况与本领域研究人员提供的已知解决方案相同,或相对于这些改进。当使用与生物细胞相关的参数进行测试时,发现特征方程非常精确(相对于完整模型,最大偏差通常小于5%)。它们可用于区分细胞悬液的方向和电特性,或用于分析微流体系统中的单个细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号