首页> 美国卫生研究院文献>Biophysical Journal >Molecular Simulations of a Dynamic Protein Complex: Role of Salt-Bridges and Polar Interactions in Configurational Transitions
【2h】

Molecular Simulations of a Dynamic Protein Complex: Role of Salt-Bridges and Polar Interactions in Configurational Transitions

机译:动态蛋白质复合物的分子模拟:盐桥和极性相互作用在构型转变中的作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ion charge pairs and hydrogen bonds have been extensively studied for their roles in stabilizing protein complexes and in steering the process of protein association. Recently, it has become clear that some protein complexes are dynamic in that they interconvert between several alternate configurations. We have previously characterized one such system: the EphA2:SHIP2 SAM-SAM heterodimer by solution NMR. Here we carried out extensive all-atom molecular-dynamics simulations on a microsecond time-scale starting with different NMR-derived structures for the complex. Transitions are observed between several discernible configurations at average time intervals of 50–100 ns. The domains reorient relative to one another by substantial rotation and a slight shifting of the interfaces. Bifurcated and intermediary salt-bridge and hydrogen-bond interactions play a role in the transitions in a process that can be described as moving along a “monkey-bar”. We notice an increased density of salt bridges near protein interaction surfaces that appear to enable these transitions, also suggesting why the trajectories can become kinetically hindered in regions where fewer of such interactions are possible. In this context, even microsecond molecular-dynamics simulations are not sufficient to sample the energy landscape unless the structures remain close to their experimentally derived low-energy configurations.
机译:离子电荷对和氢键在稳定蛋白质复合物和控制蛋白质缔合过程中的作用已被广泛研究。最近,已经清楚的是,某些蛋白质复合物是动态的,因为它们在几种替代构型之间相互转化。我们以前已经通过溶液NMR对一个这样的系统进行了表征:EphA2:SHIP2 SAM-SAM异二聚体。在这里,我们在微秒级的时间范围内进行了广泛的全原子分子动力学模拟,从不同的NMR衍生结构开始。在平均时间间隔为50–100 ns的几种可辨别配置之间观察到过渡。这些域通过界面的大量旋转和轻微移动而相对于彼此重新定向。分支和中间的盐桥和氢键相互作用在该过程的过渡过程中起着重要作用,该过程可以描述为沿着“猴子栏”运动。我们注意到靠近蛋白质相互作用表面的盐桥的密度增加,似乎能够实现这些过渡,这也表明了为什么在可能发生此类相互作用的区域中,轨迹会受到动力学阻碍。在这种情况下,即使微秒分子动力学模拟也不足以对能量分布进行采样,除非结构保持接近其实验得出的低能量构型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号