首页> 美国卫生研究院文献>Biophysical Journal >Learning Rates and States from Biophysical Time Series: A Bayesian Approach to Model Selection and Single-Molecule FRET Data
【2h】

Learning Rates and States from Biophysical Time Series: A Bayesian Approach to Model Selection and Single-Molecule FRET Data

机译:生物物理时间序列的学习率和状态:模型选择和单分子FRET数据的贝叶斯方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Time series data provided by single-molecule Förster resonance energy transfer (smFRET) experiments offer the opportunity to infer not only model parameters describing molecular complexes, e.g., rate constants, but also information about the model itself, e.g., the number of conformational states. Resolving whether such states exist or how many of them exist requires a careful approach to the problem of model selection, here meaning discrimination among models with differing numbers of states. The most straightforward approach to model selection generalizes the common idea of maximum likelihood—selecting the most likely parameter values—to maximum evidence: selecting the most likely model. In either case, such an inference presents a tremendous computational challenge, which we here address by exploiting an approximation technique termed variational Bayesian expectation maximization. We demonstrate how this technique can be applied to temporal data such as smFRET time series; show superior statistical consistency relative to the maximum likelihood approach; compare its performance on smFRET data generated from experiments on the ribosome; and illustrate how model selection in such probabilistic or generative modeling can facilitate analysis of closely related temporal data currently prevalent in biophysics. Source code used in this analysis, including a graphical user interface, is available open source via .
机译:单分子Förster共振能量转移(smFRET)实验提供的时间序列数据不仅提供了推断描述分子复合物的模型参数(例如速率常数)的机会,而且还提供了推断模型本身的信息(例如构象状态数)的机会。要解决此类状态是否存在或存在多少状态,需要谨慎对待模型选择问题,此处意味着在状态数不同的模型之间进行区分。最简单的模型选择方法将最大似然的通用思想(选择最可能的参数值)概括为最大的证据:选择最可能的模型。无论哪种情况,这种推论都带来了巨大的计算挑战,我们在这里通过利用一种称为变分贝叶斯期望最大化的近似技术来解决这一挑战。我们演示了如何将该技术应用于时间数据,例如smFRET时间序列;相对于最大似然法,显示出卓越的统计一致性;比较核糖体实验产生的smFRET数据的性能;并说明在这种概率或生成模型中进行模型选择如何能够促进对目前在生物物理学中普遍存在的紧密相关的时间数据的分析。此分析中使用的源代码(包括图形用户界面)可通过访问开源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号