首页> 美国卫生研究院文献>Biophysical Journal >A Model for Shear Stress Sensing and Transmission in Vascular Endothelial Cells
【2h】

A Model for Shear Stress Sensing and Transmission in Vascular Endothelial Cells

机译:血管内皮细胞的剪切应力传感和传递模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Arterial endothelial cell (EC) responsiveness to flow is essential for normal vascular function and plays a role in the development of atherosclerosis. EC flow responses may involve sensing of the mechanical stimulus at the cell surface with subsequent transmission via cytoskeleton to intracellular transduction sites. We had previously modeled flow-induced deformation of EC-surface flow sensors represented as viscoelastic materials with standard linear solid behavior (Kelvin bodies). In the present article, we extend the analysis to arbitrary networks of viscoelastic structures connected in series and/or parallel. Application of the model to a system of two Kelvin bodies in parallel reveals that flow induces an instantaneous deformation followed by creeping to the asymptotic response. The force divides equally between the two bodies when they have identical viscoelastic properties. When one body is stiffer than the other, a larger fraction of the applied force is directed to the stiffer body. We have also probed the impact of steady and oscillatory flow on simple sensor-cytoskeleton-nucleus networks. The results demonstrated that, consistent with the experimentally observed temporal chronology of EC flow responses, the flow sensor attains its peak deformation faster than intracellular structures and the nucleus deforms more rapidly than cytoskeletal elements. The results have also revealed that a 1-Hz oscillatory flow induces significantly smaller deformations than steady flow. These results may provide insight into the mechanisms behind the experimental observations that a number of EC responses induced by steady flow are not induced by oscillatory flow.
机译:动脉内皮细胞(EC)对血流的反应性对于正常的血管功能至关重要,并在动脉粥样硬化的发展中发挥作用。 EC流动反应可能涉及感测细胞表面的机械刺激,随后通过细胞骨架传递至细胞内转导位点。我们之前已经对EC表面流量传感器的流量诱导变形进行了建模,这些传感器表示为具有标准线性固体行为(开尔文体)的粘弹性材料。在本文中,我们将分析扩展到串联和/或并联连接的任意粘弹性结构网络。将模型应用到两个平行的开尔文体的系统中,发现流动引起瞬时变形,然后蠕变到渐近响应。当两个物体具有相同的粘弹性时,力在两个物体之间平均分配。当一个物体的刚度大于另一个物体的刚度时,较大部分的作用力将指向该较硬的物体。我们还探讨了稳定和振荡流动对简单传感器-细胞骨架-核网络的影响。结果表明,与实验观察到的EC流量响应的时间顺序一致,流量传感器比细胞内结构更快地达到其峰值变形,而核比细胞骨架元素更快地变形。结果还表明,与稳定流相比,1 Hz振荡流引起的变形要小得多。这些结果可以提供对实验观察背后的机理的了解,该实验观察表明,由稳流引起的许多EC反应不是由振荡流引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号