首页> 美国卫生研究院文献>Biophysical Journal >Electron-electron spin-spin interaction in spin-labeled low-spin methemoglobin.
【2h】

Electron-electron spin-spin interaction in spin-labeled low-spin methemoglobin.

机译:自旋标记的低自旋高铁血红蛋白中的电子-自旋-自旋相互作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nitroxyl free radical electron spin relaxation times for spin-labeled low-spin methemoglobins were measured between 6 and 120 K by two-pulse electron spin echo spectroscopy and by saturation recovery electron paramagnetic resonance (EPR). Spin-lattice relaxation times for cyano-methemoglobin and imidazole-methemoglobin were measured between 8 and 25 K by saturation recovery and between 4.2 and 20 K by electron spin echo. At low temperature the iron electron spin relaxation rates are slow relative to the iron-nitroxyl electron-electron spin-spin splitting. As temperature is increased, the relaxation rates for the Fe(III) become comparable to and then greater than the spin-spin splitting, which collapses the splitting in the continuous wave EPR spectra and causes an increase and then a decrease in the nitroxyl electron spin echo decay rate. Throughout the temperature range examined, interaction with the Fe(III) increases the spin lattice relaxation rate (1/T1) for the nitroxyl. The measured relaxation times for the Fe(III) were used to analyze the temperature-dependent changes in the spin echo decays and in the saturation recovery (T1) data for the interacting nitroxyl and to determine the interspin distance, r. The values of r for three spin-labeled methemoglobins were between 15 and 15.5 A, with good agreement between values obtained by electron spin echo and saturation recovery. Analysis of the nitroxyl spin echo and saturation recovery data also provides values of the iron relaxation rates at temperatures where the iron relaxation rates are too fast to measure directly by saturation recovery or electron spin echo spectroscopy. These results demonstrate the power of using time-domain EPR measurements to probe the distance between a slowly relaxing spin and a relatively rapidly relaxing metal in a protein.
机译:自旋标记的低自旋高铁血红蛋白的硝基氧自由基电子自旋弛豫时间通过两脉冲电子自旋回波谱法和饱和恢复电子顺磁共振(EPR)在6至120 K之间测量。氰基-高铁血红蛋白和咪唑-高铁血红蛋白的自旋晶格弛豫时间通过饱和度恢复在8至25 K之间测量,通过电子自旋回波测量在4.2至20 K之间。在低温下,铁电子自旋弛豫速率相对于铁-硝基氧-电子自旋自旋分裂慢。随着温度升高,Fe(III)的弛豫速率变得与自旋自旋分裂相当,然后大于自旋自旋分裂,这使连续波EPR谱中的分裂崩溃,并导致硝酰电子自旋先增加后减少回声衰减率。在整个检查的温度范围内,与Fe(III)的相互作用增加了硝酰的自旋晶格弛豫速率(1 / T1)。 Fe(III)的测量弛豫时间用于分析自旋回波衰减和相互作用的硝酰基的饱和度恢复(T1)数据中与温度有关的变化,并确定自旋间距离r。三种自旋标记的高铁血红蛋白的r值在15至15.5 A之间,通过电子自旋回波获得的值与饱和度恢复之间的一致性很好。对亚硝酰自旋回波和饱和恢复数据的分析还提供了在铁弛豫速率太快而无法通过饱和恢复或电子自旋回波光谱法直接测量的温度下的铁弛豫速率的值。这些结果证明了使用时域EPR测量来探测蛋白质中缓慢弛豫的自旋和相对快速弛豫的金属之间的距离的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号