首页> 美国卫生研究院文献>Biophysical Journal >Brownian dynamics simulations of probe and self-diffusion in concentrated protein and DNA solutions.
【2h】

Brownian dynamics simulations of probe and self-diffusion in concentrated protein and DNA solutions.

机译:在浓缩蛋白质和DNA溶液中探针和自扩散的布朗动力学模拟。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

We have developed a Brownian dynamics algorithm for simulating probe and self-diffusion in concentrated solutions of DNA and protein. In these simulations, proteins are represented as spheres with radii given by their hydrodynamic radii, while DNA is modeled as a wormlike chain of hydrodynamically equivalent spherical frictional elements. The molecular interaction potentials employed by the program allow for intramolecular stretching and bending motions of the DNA chains, short-range Lennard-Jones interactions, and long-range electrostatic interactions. To test the program, we have carried out simulations of bovine serum albumin (BSA) probe diffusion and DNA self-diffusion in solutions of short-chain DNA as a function of both DNA concentration and solution ionic strength. In addition, we report on simulations of BSA self-diffusion as a function of BSA concentration and ionic strength. Based on a comparison to available experimental data, we find that our simulations accurately predict these transport properties under conditions of physiological salt concentration and predict the stronger concentration dependence observed at lower salt concentrations. These results are discussed in light of the nature of the intermolecular interactions in such systems and the approximations and limitations of the simulation algorithm.
机译:我们已经开发了一种布朗动力学算法,用于模拟DNA和蛋白质浓缩溶液中的探针和自身扩散。在这些模拟中,蛋白质表示为半径由其流体力学半径给定的球体,而DNA被建模为流体力学等效的球形摩擦元件的蠕虫状链。该程序使用的分子相互作用潜能允许DNA链的分子内拉伸和弯曲运动,近距离Lennard-Jones相互作用和远距离静电相互作用。为了测试该程序,我们进行了牛血清白蛋白(BSA)探针在短链DNA溶液中扩散和DNA自扩散的模拟,该扩散是DNA浓度和溶液离子强度的函数。此外,我们报告了BSA自扩散作为BSA浓度和离子强度的函数的模拟。根据与现有实验数据的比较,我们发现我们的模拟准确地预测了生理盐浓度条件下的这些转运特性,并预测了在较低盐浓度下观察到的更强的浓度依赖性。鉴于此类系统中分子间相互作用的性质以及模拟算法的近似和局限性,对这些结果进行了讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号