首页> 美国卫生研究院文献>The Journal of Physiology >Wnt signalling suppresses voltage-dependent Na+ channel expression in postnatal rat cardiomyocytes
【2h】

Wnt signalling suppresses voltage-dependent Na+ channel expression in postnatal rat cardiomyocytes

机译:Wnt信号抑制出生后大鼠心肌细胞中的电压依赖性Na +通道表达

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Wnt signalling plays crucial roles in heart development, but is normally suppressed postnatally. In arrhythmogenic conditions, such as cardiac hypertrophy and heart failure, Wnt signalling is reactivated. To explore the potential role of Wnt signalling in arrhythmogenic electrical remodelling, we examined voltage-dependent ion channels in cardiomyocytes. Treatment of neonatal rat ventricular myocytes with either recombinant Wnt3a protein or CHIR-99021 (CHIR, a glycogen synthase kinase-3β inhibitor) caused a dose-dependent increase in Wnt target gene expression (Axin2 and Lef1), indicating activation of the Wnt/β-catenin pathway. Cardiac Na+ current (INa) density was reduced by Wnt3a (−20 ± 4 vs. control −59 ± 7 pA pF−1, at −30 mV) or CHIR (−22 ± 5 pA pF−1), without changes in steady-state activation, inactivation or repriming kinetics. Wnt3a and CHIR also produced dose-dependent reductions in the mRNA level of Scn5a (the cardiac Na+ channel α subunit gene), as well as a 56% reduction (by Wnt3a) in the Nav1.5 protein level. Consistent with INa reduction, action potentials in Wnt3a-treated neonatal rat ventricular myocytes had a lower upstroke amplitude (91 ± 3 vs. control 137 ± 2 mV) and decreased maximum upstroke velocity (70 ± 10 vs. control 163 ± 15 V s−1). In contrast, inward rectifier K+ current and L-type Ca2+ channels were not affected by Wnt3a treatment. Taken together, our data indicate that the Wnt/β-catenin pathway suppresses INa in postnatal cardiomyocytes and may contribute to ion channel remodelling in heart disease.Key points class="unordered" style="list-style-type:disc"> Wnt signalling is activated in arrhythmogenic heart diseases, but its role in the regulation of cardiac ion channel expression is unknown. Exposure of neonatal rat ventricular myocytes to Wnt3a, an activator of canonical Wnt signalling, decreases Scn5a mRNA, Nav1.5 protein and Na+ current density. Wnt3a does not affect the inward rectifier K+ current or L-type Ca2+ channels. The Wnt pathway is a negative regulator of cardiac Na+ channel expression and may play a role in altered ion channel expression in heart disease. class="head no_bottom_margin" id="__sec2title">IntroductionIon channels are critical for the rhythmic contraction of the heart (Marban, ; Schram et al. ). Alterations in ion channel expression and function are common in both ischaemic and non-ischaemic heart disease, contributing to impaired contractility and electrical instability (Tomaselli & Marban, ). In particular, cardiac Na+ current (INa) density is reduced in human heart failure (Valdivia et al. ; Shang et al. ), a canine model of heart failure (Maltsev et al. ) and a mouse model of dilated cardiomyopathy (Hesse et al. ). Dysfunctional Na+ channels due to mutations of Scn5a (the gene for cardiac INa α subunit) in patients are associated with increased susceptibility to heart failure and atrial fibrillation (Olson et al. ; Ge et al. ). Reduction of INa compromises contractility (Koesters et al. ), causes slow conduction (Sato et al. ) and induces ventricular arrhythmia (Papadatos et al. ). Thus, INa represents a therapeutic target, but the mechanisms underlying INa reduction in heart disease remain unknown.The Wnt signalling pathway is evolutionarily conserved in the animal kingdom (Cadigan & Nusse, ). Wnt ligands are secreted soluble proteins that bind to cell membrane receptors and activate intracellular cascades. In the canonical pathway, Wnt receptor activation inhibits GSK-3β, a key mediator of β-catenin degradation; β-catenin then accumulates in the cytosol and translocates into the nucleus where it regulates the transcription of a variety of genes, including Axin2 and Lef1 (). The canonical Wnt/β-catenin pathway is active during embryonic development and critically regulates cardiogenesis (Gessert & Kuhl, ). After birth, the pathway is suppressed in normal hearts, but is reactivated in various disease conditions (Dawson et al. ), including myocardial infarction (Oerlemans et al. href="#b18" rid="b18" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897320">2010), cardiac hypertrophy and heart failure (Haq et al. href="#b6" rid="b6" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897312">2003; Malekar et al. href="#b15" rid="b15" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897327">2010).href="/pmc/articles/PMC4358676/figure/fig01/" target="figure" rid-figpopup="fig01" rid-ob="ob-fig01">target="object" href="/pmc/articles/PMC4358676/figure/fig01/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC4358676/figure/fig01/" target="figure" rid-figpopup="fig01" rid-ob="ob-fig01">Figure 1Wnt3a and CHIR activate β-catenin signalling in NRVMsA, simplified diagram of the canonical Wnt/β-catenin signalling pathway. Wnt ligands bind to and activate the receptor complex (Fzd and Lrp5/6) leading to inhibition of GSK-3β, a key mediator of β-cat degradation; β-cat then accumulates in the cytosol and translocates into the nucleus where it regulates the transcription of a variety of genes, including Axin2 and Lef1. Wnt3a and CHIR used to activate the pathway were shown in red. B, expression of Wnt receptor genes in NRVMs, n = 3. C, expression of Wnt ligand genes in NRVMs, n = 3. D, expression of Wnt inhibitor genes in NRVMs, n = 3. E and F, mRNA of Axin2 and Lef1 in NRVMs after treatment with Wnt3a (0.1, 0.3 or 1.0 μg ml−1) or CHIR (3 μm) for 48 h. *P < 0.05 vs. 0 μg ml−1 Wnt3a group, n = 3. β-cat, β-catenin; CHIR, CHIR-99021; NRVMs, neonatal rat ventricular myocytes.
机译:Wnt信号在心脏发育中起关键作用,但通常在出生后被抑制。在心律失常的情况下,例如心脏肥大和心力衰竭,Wnt信号会重新激活。为了探索Wnt信号在心律失常性电重构中的潜在作用,我们检查了心肌细胞中电压依赖性离子通道。用重组Wnt3a蛋白或CHIR-99021(CHIR,一种糖原合酶激酶-3β抑制剂)治疗新生大鼠心室肌细胞会导致Wnt靶基因表达(Axin2和Lef1)呈剂量依赖性增加,表明Wnt /β的激活-连环蛋白途径。心脏Na + 电流(INa)密度降低了Wnt3a(−30±4 vs.对照−59±7 pA pF -1 ,在−30 mV)或CHIR (−22±5 pA pF -1 ),而稳态激活,失活或启动动力学均无变化。 Wnt3a和CHIR还导致Scn5a(心脏Na + 通道α亚基基因)的mRNA水平剂量依赖性降低,并且Nav1.5蛋白降低56%(Wnt3a降低)水平。与INa降低一致,Wnt3a治疗的新生大鼠心室肌细胞的动作电位具有较低的上冲幅度(91±3 vs.对照137±2 mV)和降低的最大上冲速度(70±10 vs.对照组163±15 Vs < sup> -1 )。相反,内向整流器K + 电流和L型Ca 2 + 通道不受Wnt3a处理的影响。两者合计,我们的数据表明Wnt /β-catenin途径抑制出生后心肌细胞中的INa,并可能有助于心脏病中离子通道的重构。要点 class =“ unordered” style =“ list-style-type:disc” > <!-列表行为=无序前缀词=标记类型=光盘最大标签大小= 0-> Wnt信号在心律失常性心脏病中被激活,但其在调节心脏离子中的作用通道表达未知。 新生大鼠心室肌细胞暴露于Wnt3a(一种典型的Wnt信号激活剂),会降低Scn5a mRNA,Nav1.5蛋白和Na + 电流密度。 Wnt3a不会影响向内整流器K + 电流或L型Ca 2 + 通道。 Wnt通路是心脏Na + 通道表达的负调控因子,可能在心脏病中离子通道表达的改变中起作用。 class =“ head no_bottom_margin” id =“ __ sec2title”>简介离子通道对于心脏的节律性收缩至关重要(Marban,Schram等人)。离子通道表达和功能的改变在缺血性和非缺血性心脏病中都很常见,导致收缩力和电不稳定(Tomaselli&Marban,)。特别是在人类心力衰竭(Valdivia等人; Shang等人),心力衰竭的犬模型(Maltsev等人)和人类心力衰竭中,心脏Na + 电流(INa)密度降低。扩张型心肌病的小鼠模型(Hesse等)。患者 Scn5a (心脏 I Naα亚基的基因)突变导致Na + 通道功能异常与心力衰竭易感性增加相关和房颤(Olson et .; Ge et 。)。减少 I Na会损害收缩力(Koesters al 。),导致传导缓慢(Sato et 。),并诱发室性心律不齐(Papadatos < em> et 。)。因此, I Na代表一种治疗靶标,但降低心脏病中 I Na的潜在机制尚不清楚。在动物界,Wnt信号通路在进化上是保守的(Cadigan& Nusse,)。 Wnt配体是分泌的可溶性蛋白,可与细胞膜受体结合并激活细胞内级联反应。在经典途径中,Wnt受体激活抑制GSK-3β(β-连环蛋白降解的关键介质)。然后,β-catenin积聚在细胞质中并转移到细胞核中,在那里它调节各种基因的转录,包括 Axin2 Lef1 ()。经典的Wnt /β-catenin途径在胚胎发育过程中活跃,并严格调节心脏发生(Gessert&Kuhl,)。出生后,该途径在正常心脏中被抑制,但在各种疾病条件下都被重新激活(Dawson et )。,包括心肌梗塞(Oerlemans et 。href="#b18" rid="b18" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897320"> 2010 ),心脏肥大和心力衰竭(Haq al 。href="#b6" rid="b6" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897312"> 2003 ; Malekar et 。href="#b15" rid="b15" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897327"> 2010 )。<!-fig ft0-> <!-fig模式=文章f1-> href =“ / pmc / articles / PMC4358676 / figure / fig01 /” target =“ figure” rid-figpopup =“ fig01” rid-ob =“ ob-fig01“> <!-fig / graphic | fig / alternatives / graphic mode =” anchored“ m1-> target =” object“ href =” / pmc / articles / PMC4358676 / figure / fig01 /?report = objectonly“>在单独的窗口中打开 class =” figpopup“ href =” / pmc / articles / PMC4358676 / figure / fig01 /“ target =” figure“ rid-figpopup =” fig01图1 <!-标题a7-> Wnt3a和CHIR激活NRVM A 中的β-catenin信号传导,简化图典型的Wnt /β-catenin信号通路Wnt配体结合并激活受体复合物(Fzd和Lrp5 / 6),导致抑制GSK-3β(β-猫降解的关键介质)。然后,β-cat积聚在胞质溶胶中并转移到细胞核中,在那里它调节包括 Axin2 Lef1 在内的多种基因的转录。用于激活该途径的Wnt3a和CHIR以红色显示。 B ,NRVM中Wnt受体基因的表达, n = 3。 C ,NRVM中Wnt配体基因的表达, n < / em> = 3。 D ,Wnt抑制剂基因在NRVM中的表达, n = 3。 E F ,用Wnt3a(0.1、0.3或1.0μgml -1 )或CHIR(3μm)处理后的NRVM中 Axin2 Lef1 的mRNA )48小时。 * P <0.05 vs 。 β-cat,β-catenin; 0μgml −1 Wnt3a组, n = 3。 CHIR,CHIR-99021; NRVM,新生大鼠心室肌细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号