首页> 美国卫生研究院文献>The Journal of Physiology >Organization of left–right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling
【2h】

Organization of left–right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling

机译:哺乳动物脊髓神经元活动左右协调的组织:来自计算模型的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Different locomotor gaits in mammals, such as walking or galloping, are produced by coordinated activity in neuronal circuits in the spinal cord. Coordination of neuronal activity between left and right sides of the cord is provided by commissural interneurons (CINs), whose axons cross the midline. In this study, we construct and analyse two computational models of spinal locomotor circuits consisting of left and right rhythm generators interacting bilaterally via several neuronal pathways mediated by different CINs. The CIN populations incorporated in the models include the genetically identified inhibitory (V0D) and excitatory (V0V) subtypes of V0 CINs and excitatory V3 CINs. The model also includes the ipsilaterally projecting excitatory V2a interneurons mediating excitatory drive to the V0V CINs. The proposed network architectures and CIN connectivity allow the models to closely reproduce and suggest mechanistic explanations for several experimental observations. These phenomena include: different speed-dependent contributions of V0D and V0V CINs and V2a interneurons to left–right alternation of neural activity, switching gaits between the left–right alternating walking-like activity and the left–right synchronous hopping-like pattern in mutants lacking specific neuron classes, and speed-dependent asymmetric changes of flexor and extensor phase durations. The models provide insights into the architecture of spinal network and the organization of parallel inhibitory and excitatory CIN pathways and suggest explanations for how these pathways maintain alternating and synchronous gaits at different locomotor speeds. The models propose testable predictions about the neural organization and operation of mammalian locomotor circuits.Key points class="unordered" style="list-style-type:disc"> Coordination of neuronal activity between left and right sides of the mammalian spinal cord is provided by several sets of commissural interneurons (CINs) whose axons cross the midline. Genetically identified inhibitory V0D and excitatory V0V CINs and ipsilaterally projecting excitatory V2a interneurons were shown to secure left–right alternation at different locomotor speeds. We have developed computational models of neuronal circuits in the spinal cord that include left and right rhythm-generating centres interacting bilaterally via three parallel pathways mediated by V0D, V2a–V0V and V3 neuron populations. The models reproduce the experimentally observed speed-dependent left–right coordination in normal mice and the changes in coordination seen in mutants lacking specific neuron classes. The models propose an explanation for several experimental results and provide insights into the organization of the spinal locomotor network and parallel CIN pathways involved in gait control at different locomotor speeds.
机译:哺乳动物中不同的运动步态,例如步行或疾驰,是由脊髓神经元回路中的协调活动产生的。连合神经元(CIN)提供了脐带左右两侧神经元活动的协调,连合神经元的轴突横穿中线。在这项研究中,我们构建和分析由左右节奏发生器通过不同CIN介导的几种神经元途径双向相互作用的脊柱运动回路的两个计算模型。纳入模型的CIN群体包括V0 CIN和兴奋性V3 CIN的遗传识别抑制性(V0D)和兴奋性(V0V)亚型。该模型还包括同侧投射的兴奋性V2a中神经元,介导对V0V CIN的兴奋性驱动。拟议的网络体系结构和CIN连接性允许模型密切复制并为一些实验观察提供力学解释。这些现象包括:V0D和V0V CIN和V2a中间神经元对神经活动的左右交替的不同速度依赖性贡献,突变体中左右交替步行样活动与左右同步跳动样板之间的步态切换缺乏特定的神经元类别,以及屈肌和伸肌相持续时间的速度依赖性不对称变化。该模型提供了对脊髓网络结构以及平行抑制性和兴奋性CIN途径组织的见解,并为这些途径如何在不同运动速度下保持交替和同步步态提供了解释。这些模型提出了关于哺乳动物运动回路的神经组织和操作的可测预测。要点 class =“ unordered” style =“ list-style-type:disc”> <!-list-behavior = unordered prefix-word = mark-type = disc max-label-size = 0-> 哺乳动物脊髓左右两侧之间神经元活动的协调由轴突穿过中线的几组连合中间神经元(CIN)提供。遗传学鉴定的抑制性V0D和兴奋性V0V CIN和同侧突出的兴奋性V2a中间神经元在不同的运动速度下可确保左右交替。 我们已经开发了脊髓中神经元回路的计算模型,该模型包括通过V0D,V2a–V0V和V3神经元群体介导的三个平行途径在两侧进行双向交互的左右节奏发生中心。 这些模型再现了正常小鼠中实验观察到的速度依赖性左右协调性,以及缺乏特定神经元类别的突变体中观察到的协调性变化。 该模型为几种实验结果提供了解释,并为了解脊髓运动网络的组织以及参与不同运动速度步态控制的平行CIN通路提供了见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号