首页> 美国卫生研究院文献>Journal of the Royal Society Interface >The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures
【2h】

The structural efficiency of the sea sponge Euplectella aspergillum skeleton: bio-inspiration for 3D printed architectures

机译:海海绵Euplectella aspergillum骨架的结构效率:3D打印建筑的生物灵感

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In Nature, despite the diversity of materials, patterns and structural designs, the majority of biomineralized systems share a common feature: the incorporation of multiple sets of discrete elements across different length scales. This paper is the first to assess whether the design features observed in the hexactinellid sea sponge Euplectella aspergillum can be transferred and implemented for the development of new structurally efficient engineering architectures manufactured by three-dimensional (3D) additive manufacturing (AM). We present an investigation into the design and survival strategies found in the biological system and evaluate their translation into a scaled engineering analogue assessed experimentally and through finite-element (FE) simulations. Discrete sections of the skeletal lattice were evaluated and tested in an in situ compression fixture using micro-computed tomography (μCT). This methodology permitted the characterization of the hierarchical organization of the siliceous skeleton; a multi-layered arrangement with a fusion between struts to improve the local energy-absorbing capabilities. It was observed that the irregular overlapping architecture of spicule–nodal point sub-structure offers unique improvements in the global strength and stiffness of the structure. The 3D data arising from the μCT of the skeleton were used to create accurate FE models and replication through 3D AM. The printed struts in the engineering analogue were homogeneous, comprising bonded ceramic granular particles (10–100 µm) with an outer epoxy infused shell. In these specimens, the compressive response of the sample was expected to be dynamic and catastrophic, but while the specimens showed a similar initiation and propagation failure pattern to E. aspergillum, the macroscopic deformation behaviour was altered from the expected predominantly brittle behaviour to a more damage tolerant quasi-brittle failure mode. In addition, the FE simulation of the printed construct predicted the same global failure response (initiation location and propagation directionality) as observed in E. aspergillum. The ability to mimic directly the complex material construction and design features in E. aspergillum is currently beyond the latest advances in AM. However, while acknowledging the material-dominated limitations, the results presented here highlight the considerable potential of direct mimicry of biomineralized lattice architectures as future light-weight damage tolerant composite structures.
机译:在自然界中,尽管材料,图案和结构设计多种多样,但大多数生物矿化系统都有一个共同的特征:在不同长度范围内合并多组离散元素。本文是第一个评估是否可以转移和实施在六辛烯海海绵大孢菌中观察到的设计特征,以开发由三维(3D)增材制造(AM)制造的新型结构有效的工程架构的方法。我们提出了对在生物系统中发现的设计和生存策略的调查,并评估了它们转化为通过实验和通过有限元(FE)模拟进行评估的规模化工程类似物的能力。使用微计算机断层扫描(μCT)在原位压缩固定装置中评估并测试了骨骼晶格的离散部分。这种方法可以表征硅质骨架的层次结构。支柱之间融合的多层结构,可提高局部能量吸收能力。观察到,针状结点亚结构的不规则重叠结构在整体强度和结构刚度方面提供了独特的改进。由骨架的μCT产生的3D数据用于创建准确的FE模型并通过3D AM复制。工程类似物中的印刷支杆是均匀的,包括粘结的陶瓷颗粒(10–100 µm)和外部环氧注入壳。在这些样品中,样品的压缩响应被认为是动态的并且是灾难性的,但是尽管样品显示出与曲霉相似的萌生和传播失败模式,但宏观变形行为从预期的主要为脆性改变为更大。容忍准脆性破坏模式。另外,印刷构造的有限元模拟预测了与在曲霉中观察到的相同的整体失效响应(起始位置和传播方向性)。直接模仿曲霉中复杂的材料构造和设计特征的能力目前超出了增材制造的最新进展。但是,尽管承认了材料主导的局限性,但此处给出的结果突出了直接模仿生物矿化格构架作为未来轻量级耐损伤复合材料结构的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号