首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands
【2h】

Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands

机译:对模块性和集成性的分析表明蜻蜓翅脉的进化主要是为了响应功能需求

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Insect wings show a high variability in wing venation. Selection for function, developmental pathways and phylogeny likely influenced wing vein diversification, however, quantitative data to estimate these influences and their interplay are missing. Here, it is tested how dragonfly wing vein configuration is influenced by functional demands, development, phylogeny and allometry using the concepts of modularity and integration. In an evolutionary context, modules are sets of characters that evolve in relative independence to other characters, while integration refers to a high degree of association between subparts of a structure. Results show allometric and phylogenetic signal in the wing shape variation, however, patterns of integration and modularity are not influenced by these two factors. Overall, dragonfly wings are highly integrated structures with almost no modular signal. Configuration changes in one wing vein or wing area thus influence wing shape as a whole. Moreover, the fore- and hindwings correlate with each other in their evolutionary shape variation supporting biomechanical data of wing interdependence. Despite the overall high degree of evolutionary integration, functional hypotheses of modularity could be confirmed for two wing areas, the arculus–triangle complex at the base of the wing which is responsible for passive wing folding especially during flapping flight and the location of the pterostigma, a coloured wing cell which is more heavy that other wing cells and passively regulates wing pitch as well as critical flight speeds during gliding. Although evolving as distinct modules, these specific vein regions also show high integration and evolve at the same rates like the whole wing which suggests an influence of these structures on the shape evolution of the rest of the wing. Their biomechanical role as passive regulators of wing corrugation and wing pitch suggests that these structures decisively influenced the evolution of advanced modern flight styles and explains their retention once they had evolved early within the lineage Odonatoptera.
机译:昆虫的翅膀在翅膀的通气中表现出高度的可变性。功能,发育途径和系统发育的选择可能会影响机翼静脉的多样化,但是,缺少估计这些影响及其相互作用的定量数据。在这里,使用模块化和集成的概念,测试了蜻蜓翼静脉的构造如何受到功能需求,发育,系统发育和异速生长的影响。在进化的上下文中,模块是与其他字符相对独立地进化的字符集,而集成是指结构子部分之间的高度关联。结果表明,机翼形状变化中的异体和系统发育信号,但是,整合和模块化的模式不受这两个因素的影响。总体而言,蜻蜓翅膀是高度集成的结构,几乎没有模块化信号。一个机翼静脉或机翼区域的构型变化会整体上影响机翼形状。此外,前翼和后翼的进化形状变化相互关联,从而支持了机翼相互依存的生物力学数据。尽管总体上高度集成了进化,但仍可以在两个机翼区域确认模块化的功能性假设,即机翼底部的三角形-三角形复合体,该复合体负责被动机翼的折叠,尤其是在襟翼飞行过程中以及翼节的位置,一种彩色的机翼,它比其他机翼更重,并且可以在滑行时被动地调节机翼的俯仰角和临界飞行速度。尽管这些特定的静脉区域以不同的模块形式进化,但它们也显示出高度的整合性,并以与整个机翼相同的速率进化,这表明这些结构对机翼其余部分的形状演化产生了影响。它们作为机翼波纹和机翼俯仰的被动调节器的生物力学作用表明,这些结构决定性地影响了先进的现代飞行方式的演变,并解释了它们在齿翅目中早期发育后的保持力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号